0000000000219546

AUTHOR

E. Haettner

showing 14 related works from this author

Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021

2022

The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed

ydinfysiikka
researchProduct

The FRS Ion Catcher

2013

At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Sup…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsFissionMass spectrometry01 natural sciencesIonHEAVY-IONSNuclear physicsENERGYGSI0103 physical sciencesddc:530NuclideNuclear Experiment010306 general physicsInstrumentationSUPER-FRSDirect mass measurementta114010308 nuclear & particles physicsChemistryProjectileMultiple-reflection time-of-flight mass spectrometerExtraction timeTIMECryogenic gas-filled stopping cellQuadrupoleISOBAR-SEPARATIONFacility for Antiproton and Ion ResearchAtomic physicsProjectile fragmentationBeam (structure)Exotic nucleiSYSTEMNuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms
researchProduct

First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

2015

Physics letters / B 744, 137 - 141 (2015). doi:10.1016/j.physletb.2015.03.047

Nuclear reactionNuclear and High Energy PhysicsISOBAR SEPARATIONPROJECTILESpatial isomer separationMass spectrometry530Ion211Po ionsPo-211 ionsCRYOGENIC STOPPING CELLPhysics::Atomic and Molecular ClustersIsomeric ratioFACILITYddc:530Physics::Chemical PhysicsSpectroscopyNuclear ExperimentFRAGMENTSPhysicsExcitation energyta114Multiple-reflection time-of-flight mass spectrometerPERFORMANCEIsotope separation in flightlcsh:QC1-999IsomerFRS-ESRTime of flightSTATESEXOTIC NUCLEIMass spectrumIsomeric beamAtomic physicsGround stateSYSTEMExcitationlcsh:Physics
researchProduct

Direct mass measurements above uranium bridge the gap to the island of stability

2010

The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…

Nuclear physicsMass numberMultidisciplinaryMass excessAtomic mass constantIsotopeChemistryNuclideAtomic physicsNuclear ExperimentAtomic massBeta-decay stable isobarsSpontaneous fission
researchProduct

First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u

2013

A cryogenic stopping cell (CSC) has been commissioned with U-238 projectile fragments produced at 1000 MeV/u. The spatial isotopic separation in flight was performed with the FRS applying a monoenergetic degrader. For the first time, a stopping cell was operated with exotic nuclei at cryogenic temperatures (70 to 100K). A helium stopping gas density of up to 0.05mg/cm(3) was used, about two times higher than reached before for a stopping cell with RF ion repelling structures. An overall efficiency of up to 15%, a combined ion survival and extraction efficiency of about 50%, and extraction times of 24ms were achieved for heavy a-decaying uranium fragments. Mass spectrometry with a multiple-r…

Materials scienceGeneral Physics and Astronomychemistry.chemical_elementMass spectrometry7. Clean energy01 natural sciencesIonNuclear physicsENERGYGSIION-OPTICAL SYSTEMS0103 physical sciencesddc:530010306 general physicsSpectroscopySUPER-FRSHeliumSHIPTRAPCATCHER010308 nuclear & particles physicsProjectileExtraction (chemistry)UraniumBEAMSTIMEchemistryFLIGHT MASS-SPECTROMETRYMATTEROverall efficiencyEurophysics Letters
researchProduct

Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

2013

Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

Nuclear physicschemistryBinding energychemistry.chemical_elementNuclear binding energyTransactinide elementNuclideNobeliumAtomic physicsMass spectrometryPenning trapLawrenciumAIP Conference Proceedings
researchProduct

Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

2011

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

PhysicsIsotope010308 nuclear & particles physicsGeneral Physics and AstronomyFOS: Physical sciencesrp-process[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trapMass spectrometry7. Clean energy01 natural sciencesAtomic massNuclear physics13. Climate actionNucleosynthesis0103 physical sciencesNeutronNuclideNuclear Experiment (nucl-ex)010306 general physicsNuclear Experiment
researchProduct

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

2014

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.

PhysicsMultidisciplinaryIsotopeNuclear TheoryBinding energyShell (structure)FOS: Physical scienceschemistry.chemical_elementIsland of stabilityNuclear physicschemistryNeutron numberNobeliumAtomic numberNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentLawrenciumScience
researchProduct

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

2013

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

Nuclear and High Energy PhysicsProtonIsotopeChemistryNuclear TheoryBinding energychemistry.chemical_elementIsland of stabilityNuclear physicsAtomic nucleusNeutronNobeliumInstrumentationLawrenciumNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Design, construction and cooling system performance of a prototype cryogenic stopping cell for the Super-FRS at FAIR

2015

A cryogenic stopping cell for stopping energetic radioactive ions and extracting them as a low energy beam was developed. This first ever cryogenically operated stopping cell serves as prototype device for the Low-Energy Branch of the Super-FRS at FAIR. The cell has a stopping volume that is 1 m long and 25 cm in diameter. Ions are guided by a DC field along the length of the stopping cell and by a combined RF and DC fields provided by an RE carpet at the exit-hole side. The ultra-high purity of the stopping gas required for optimum ion survival is reached by cryogenic operation. The design considerations and construction of the cryogenic stopping cell, as well as some performance character…

Dc fieldNuclear and High Energy PhysicsSPACE-CHARGEPhysics::Instrumentation and DetectorsNuclear engineering7. Clean energy01 natural sciencesIonNuclear physicsSuper-FRSENERGYCryogenic stopping cell0103 physical sciencesWater coolingddc:530FACILITYradioactive ion beams010306 general physicsInstrumentationRADIOACTIVE IONSFinal versionPhysicsCATCHERSPECTROSCOPYta114010308 nuclear & particles physicsCYCLOTRON GAS STOPPERCryocoolerSpace chargeVolume (thermodynamics)13. Climate actionIon catcherRadioactive on beamsFLIGHT MASS-SPECTROMETRYPROJECTILE FRAGMENTSBeam (structure)ION GUIDE
researchProduct

Rate capability of a cryogenic stopping cell for uranium projectile fragments produced at 1000 MeV/u

2016

At the Low-Energy Branch (LEB) of the Super-FRS at FAIR, projectile and fission fragments will be produced at relativistic energies, separated in-flight, energy-bunched, slowed down and thermalized in a cryogenic stopping cell (CSC) filled with ultra-pure He gas. The fragments are extracted from the stopping cell using a combination of DC and RF electric fields and gas flow. A prototype CSC for the LEB has been developed and successfully commissioned at the FRS Ion Catcher at GSI. Ionization of He buffer gas atoms during the stopping of energetic ions creates a region of high space charge in the stopping cell. The space charge decreases the extraction efficiency of stopping cells since the …

Nuclear and High Energy PhysicsEXTRACTIONFissionBuffer gasION-CATCHER01 natural sciencesSpace chargeIonHEAVY-IONSNuclear physicsMOBILITIESElectric fieldIonization0103 physical sciencesRate capabilityddc:530SPECTROMETER010306 general physicsNuclear ExperimentInstrumentationSUPER-FRSHIGH-PRECISION EXPERIMENTSta114010308 nuclear & particles physicsChemistryProjectileBEAMSPERFORMANCEGAS CELLSpace chargeExtraction efficiencyExtraction timeCryogenic gas-filled stopping cellAtomic physicsBeam (structure)Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms
researchProduct

Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$

2022

Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304

Nuclear Theoryddc:530Nuclear Experimentydinfysiikka530
researchProduct

High-resolution, accurate MR-TOF-MS for short-lived, exotic nuclei of few events in their ground and low-lying isomeric states

2019

Mass measurements of fission and projectile fragments, produced via $^{238}$U and $^{124}$Xe primary beams, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with a mass resolving powers (FWHM) up to 410,000 and an uncertainty of $6\cdot 10^{-8}$. The nuclides were produced and separated in-flight with the fragment separator FRS at 300 to 1000 MeV/u and thermalized in a cryogenic stopping cell. The data-analysis procedure was developed to determine with highest accuracy the mass values and the corresponding uncertainties for the most challenging conditions: down to a few events in a spectrum and overlapping distributions, ch…

Physics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experiment
researchProduct

Fast-timing Measurement in \(^{96}\)Pd: Improved Accuracy for the Lifetime of the \(4_1^{+}\) State

2023

Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state. peerReviewed

General Physics and AstronomyydinfysiikkaActa Physica Polonica B Proceedings Supplement
researchProduct