0000000000219553

AUTHOR

D. Kahl

showing 8 related works from this author

Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021

2022

The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed

ydinfysiikka
researchProduct

Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

2017

Beta-delayed neutron emission (Beta-n) is a form of radioactive decay in which an electron, an anti-neutrino and one or more neutrons are emitted. This process arises if the energy window of the decay Q_Beta is greater than the neutron separation energy S n of the daughter. The probability in each decay of emitting neutrons is called the Pn value. This form of decay plays a key role in the synthesis of chemical elements in the Universe via the rapid neutron capture process, or r-process. The r-process proceeds far from the valley of nuclear stability, and leads to very neutron-rich nuclei that then decay to the line of stability. Most of these nuclei are ßn emitters. The initial abundance d…

AstrofísicaNeutron emissionQC1-999Astrophysics::High Energy Astrophysical PhenomenaNeutron detectorNuclear TheoryElectronNeutronAstrophysics01 natural sciencesNuclear physics0103 physical sciencesNeutron detectionNeutron010306 general physicsNuclear ExperimentDelayed neutronsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]Neutrons:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear structureDetectorNeutron captureDelayed neutronRadioactive decay
researchProduct

The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process

2018

An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.

AstrofísicaDelayed neutronNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear dataNuclear TheoryMeasure (physics)General Physics and AstronomyNeutronAstrophysics01 natural sciencesNuclear physics0103 physical sciencesNeutronNuclear Experiment010306 general physics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPhysics:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear dataNeutron capture:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]r-processDelayed neutronActa Physica Polonica B
researchProduct

β-delayed neutron emission of r-process nuclei at the N = 82 shell closure

2021

This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…

Nuclear and High Energy PhysicsNational securityQC1-999ß-delayedNuclear physicsLibrary scienceNeutrons--Capturaβ-delayed neutron emission7. Clean energy01 natural sciencesNeutrons--CaptureAstrophysical0103 physical sciencesEuropean commissionr-processimportant010306 general physicsChinaNuclear ExperimentNeutron emissionr-processPhysics:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsbusiness.industryr-processPhysicsChinese academy of sciencesbeta-delayed neutron emissionResearch councilChristian ministryFísica nuclearNational laboratorybusinessAdministration (government)Physics Letters B
researchProduct

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…

Nuclear and High Energy Physicsastro-ph.SRNuclear TheoryExplosive materialnucl-thStrong interactionnucl-ex01 natural sciencesIonReaction ratesymbols.namesake0103 physical sciencesCoulombMirror nuclei010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsradioactive beams010308 nuclear & particles physicsshell modellcsh:QC1-999Astrophysics - Solar and Stellar AstrophysicsExcited statesymbolsX-ray burststransfer reactionsAtomic physicsHamiltonian (quantum mechanics)ydinfysiikkalcsh:PhysicsPhysics Letters B
researchProduct

Single-particle shell strengths near the doubly magic nucleus Ni and the Ni( , ) Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu−$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA γ-array. Spectroscopic factors are compared with new shell-model calculations using a full pf model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constraints on the…

Physics Letters
researchProduct

Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$

2022

Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304

Nuclear Theoryddc:530Nuclear Experimentydinfysiikka530
researchProduct

Fast-timing Measurement in \(^{96}\)Pd: Improved Accuracy for the Lifetime of the \(4_1^{+}\) State

2023

Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state. peerReviewed

General Physics and AstronomyydinfysiikkaActa Physica Polonica B Proceedings Supplement
researchProduct