0000000000220173
AUTHOR
Rossella Calabrese
showing 19 related works from this author
SCAFFOLD A STRUTTURA POLISACCARIDICA/POLIAMINOACIDICA PER IL RILASCIO SOSTENUTO DI DNA
2007
Scaffolds of Hyaluronan crosslinked with alpha,beta-polyaspartylhydrazide for uses in tissue engineering field
2006
New injectable depot systems based on alpha,beta-poly(N-2-hydroxyethyl)-D,L-aspartammide copolymers
2006
Biodegradable and pH-sensitive hydrogels for potential colon-specific drug delivery: Characterization and in vitro release studies
2008
A novel pH-sensitive and biodegradable composite hydrogel, based on a methacrylated and succinic derivative of dextran, named Dex-MA-SA, and a methacrylated and succinic derivative of alpha,beta-poly( N-2-hydroxyethyl)- DL-aspartamide (PHEA), named PHM-SA, was produced by photocross-linking. The goal was to obtain a colon-specific drug delivery system, exploiting both the pH-sensitive behavior and the colon-specific degradability. The hydrogel prepared with a suitable ratio between the polysaccharide and the polyaminoacid was characterized regarding its swelling behavior in gastrointestinal simulated conditions, chemical and enzymatic degradability, interaction with mucin, and cell compatib…
Polysaccharide/polyaminoacid composite scaffolds for modified DNA release.
2009
Abstract In this work composite polymeric films or sponges, based on hyaluronic acid (HA) covalently crosslinked with α,β-poly(N-2-hydroxyethyl)(2-aminoethylcarbamate)- d , l -aspartamide (PE), have been prepared and characterized as local gene delivery systems. In particular, HA/PE scaffolds have been loaded with PE/DNA interpolyelectrolyte complexes, employing PE as a macromolecular crosslinker for HA and as a non-viral vector for DNA. In vitro studies showed that HA/PE films and sponges have high compatibility with human dermal fibroblasts and they give a sustained DNA release, whose trend can be easily tailored by varying the crosslinking ratio between HA and PE. Electrophoresis analysi…
CROSSLINKED HYALURONAN WITH A PROTEIN-LIKE POLYMER: NOVEL BIORESORBABLE FILMS FOR BIOMEDICAL APPLICATIONS
2007
In this work, novel hydrogel films based on hyaluronan (HA) chemically crosslinked with the alpha,beta-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-D,L-aspartamide (PHEA-EDA) were produced by solution casting method. The goal was to exploit both the biological key role of HA in tissue repair and regeneration, and the versatility of a synthetic protein-like polymer as the PHEA-EDA, in order to obtain biomaterials with physicochemical and biological properties suitable for a clinical use. By varying the molar ratio between the PHEA-EDA amino groups and HA carboxyl groups, three different films were obtained and characterized. Particularly FTIR, swelling, hydrolysis, and enzymatic degradatio…
FLUORINATED DERIVATIVES OF A POLYASPARTAMIDE BEARING POLYETHYLENE GLYCOL CHAINS AS OXYGEN CARRIERS
2008
Abstract In this paper the synthesis and characterization of new fluorinated polymers based on a polyaspartamide bearing polyethylene glycol (PEG) chains, are reported. The starting material was the α,β-poly(N-2-hydroxyethyl)- dl -aspartamide (PHEA), a water soluble and biocompatible polymer, that has been derivatized with both polyethylene glycol (with a molecular weight of 2000 Da) and 5-pentafluorophenyl-3-perfluoroheptyl-1,2,4-oxadiazole. By varying the amount of the fluorinated oxadiazole, three samples have been prepared and characterized by FT-IR, 1H NMR, 19F NMR and UV–VIS spectroscopy. Size exclusion chromatography analysis of these copolymers revealed the occurrence of a self-asso…
Hydrogels for potential colon drug release by thiol-ene conjugate addition of a new inulin derivative.
2008
Inulin was chosen as a starting polymer for biocompatible, pH-sensitive and biodegradable hydrogels. Three INUDVSA-TT hydrogels were obtained by crosslinking inulin derivatives with trimethylolpropane tris(3-mercaptopropionate) under varying conditions. The resulting hydrogels were cell compatible, as demonstrated by MTS and trypan blue exclusion assays acting on Caco-2 cells, and were biodegraded by inulinase and esterase, thus suggesting their use as colonic drug delivery systems. 2-Methoxyestradiol, an anti-cancer drug, was soaked in INUDVSA-TT hydrogels and its in vitro release and apoptotic effect on Caco-2 cells were evaluated.