0000000000221342

AUTHOR

I. Gable

showing 2 related works from this author

Performance of the ATLAS liquid argon endcap calorimeter in the pseudorapidity region in beam tests

2008

Abstract The pseudorapidity region 2.5 | η | 4.0 in ATLAS is a particularly complex transition zone between the endcap and forward calorimeters. A set-up consisting of 1 4 resp. 1 8 of the full azimuthal acceptance of the ATLAS liquid argon endcap and forward calorimeters has been exposed to beams of electrons, pions and muons in the energy range E ⩽ 200 GeV at the CERN SPS. Data have been taken in the endcap and forward calorimeter regions as well as in the transition region. This beam test set-up corresponds very closely to the geometry and support structures in ATLAS. A detailed study of the performance in the endcap and forward calorimeter regions is described. The data are compared wit…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physics01 natural sciencesCalorimeterNuclear physicsmedicine.anatomical_structurePionAtlas (anatomy)Pseudorapidity0103 physical sciencesmedicineCathode rayHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region in beam tests

2004

Abstract A full azimuthal φ -wedge of the ATLAS liquid argon end-cap calorimeter has been exposed to beams of electrons, muons and pions in the energy range 6 GeV ⩽ E ⩽ 200 GeV at the CERN SPS. The angular region studied corresponds to the ATLAS impact position around the pseudorapidity interval 1.6 | η | 1.8 . The beam test setup is described. A detailed study of the performance is given as well as the related intercalibration constants obtained. Following the ATLAS hadronic calibration proposal, a first study of the hadron calibration using a weighting ansatz is presented. The results are compared to predictions from Monte Carlo simulations, based on GEANT 3 and GEANT 4 models.

GEANT-3PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsMonte Carlo methodHadron01 natural sciences7. Clean energyCalorimeterNuclear physicsmedicine.anatomical_structureAtlas (anatomy)Pseudorapidity0103 physical sciencesmedicineHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct