0000000000221478

AUTHOR

Damian Drzyzga

showing 5 related works from this author

Algae in Biotechnological Processes

2018

As photoautotrophic organisms, algae possess all of the valuable features that determine their role as the primary producers in the biosphere. A wide range of tolerance based on their extremely efficient adaptation to biochemical processes, as well as the specific cellular structure of these organisms, when correlated with the ecological plasticity of microalgae in particular, predispose these biota to growing and developing under either laboratory or industrial conditions. Hence, the natural features of algae have opened wide the door for the multidirectional biotechnological use of these organisms, with a dynamically growing number of such applications fully supporting this thesis. Among …

0106 biological sciences0301 basic medicineCyanobacteriaPollutantbiologyPrimary producersPhycobiliproteinBiomassBiotabiology.organism_classification01 natural sciences03 medical and health sciences030104 developmental biologyAlgae010608 biotechnologyEcosystemBiochemical engineering
researchProduct

The aminophosphonate glyphosine enhances phycobiliprotein yields from selected cyanobacterial cultures

2017

Among added-value products obtained from cyanobacterial cultures are phycobiliproteins, photosynthetic pigments that have found an increasing number of applications as natural dyes for food, cosmetics, pharmaceuticals, and antioxidants. To obtain sustainable production, we aimed at maximizing phycobilin yield through the increase of either the final biomass or the specific content of these pigments by varying culture parameters, such as chemical composition and pH of the medium or quality and intensity of the light. Here, we report that the addition to the culture medium of millimolar or submillimolar concentrations of the aminophosphonate glyphosine [(N,N-bis(phosphonomethyl)glycine], form…

0106 biological sciences0301 basic medicineFreshwater and halophilic cyanobacteriaBiomassPlant ScienceBiologyPhycobiliproteinAquatic SciencePhotosynthesis01 natural sciencesNO03 medical and health scienceschemistry.chemical_compoundPigmentGlyphosine [(NBiomass yield; Freshwater and halophilic cyanobacteria; Glyphosine [(NN-bis(phosphonomethyl)glycine]; Phycobiliprotein; Product yield; Aquatic Science; Plant SciencePhycobilinFood scienceProduct yieldN-bis(phosphonomethyl)glycine]PhycobiliproteinPlant physiologyBiomass yieldHalophile030104 developmental biologyBiochemistrychemistryAminophosphonatevisual_artvisual_art.visual_art_medium010606 plant biology & botany
researchProduct

Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria

2017

The usefulness of glyphosate [N-(phosphonomethyl)glycine] as a source of nutritive phosphorus for species of halophilic cyanobacteria has been postulated for years. Our results indicate a stimulating effect of glyphosate on the growth of four out of five examined freshwater species, Anabaena variabilis (CCALA 007), Chroococcus minutus (CCALA 055), Fischerella cf. maior (CCALA 067) and Nostoc cf. muscorum (CCALA 129), in a manner dependent on the applied concentration. The most significant stimulation was observed at a dose of 0.1 mM glyphosate. The decrease in the amount of phosphonate, which correlated with microbial growth, demonstrated that glyphosate may play an important role in cyanob…

0301 basic medicineCyanobacteriaNostocphosphorus bindingchemistry.chemical_elementPlant Science010501 environmental sciencesAquatic Science01 natural sciencesAlgal bloomcyanobacteriaArticle03 medical and health scienceschemistry.chemical_compoundglyphosateBotany0105 earth and related environmental sciencesbiologyPhosphorusbiology.organism_classificationPhosphatePhosphonate030104 developmental biologychemistryGlyphosatephosphonatephosphorus uptakeAnabaena variabilisJournal of Applied Phycology
researchProduct

Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms

2017

Aminopolyphosphonates (AAPs) are commonly used industrial complexones of metal ions, which upon the action of biotic and abiotic factors undergo a breakdown and release their substructures. Despite the low toxicity of AAPs towards vertebrates, products of their transformations, especially those that contain phosphorus and nitrogen, can affect algal communities. To verify whether such chemical entities are present in water ecosystems, much effort has been made in developing fast, inexpensive, and reliable methods for analyzing phosphonates. However, unfortunately, the methods described thus far require time-consuming sample pretreatment and offer relatively high values of the limit of detect…

0301 basic medicineHealth Toxicology and MutagenesisMetal ions in aqueous solutionOrganophosphonatesFresh Water010501 environmental sciencesCyanobacteria01 natural sciencesChloride03 medical and health scienceschemistry.chemical_compoundSpecies SpecificitymedicineEnvironmental ChemistryOrganic chemistryDerivatization0105 earth and related environmental sciencesCyanobacterial biodegradationPollutant transformationGeneral MedicineEutrophicationPollutionDTPMPPhosphonateDecompositionAminopolyphosphonates030104 developmental biologychemistryWater pollutionGlycineOrganophosphonatesAnalytical determinationHPLCWater Pollutants Chemicalmedicine.drugResearch ArticleEnvironmental Science and Pollution Research International
researchProduct

Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacteriumAnabaena variabilisproceeds via a C-P lyase-independent pathway

2017

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative…

0301 basic medicineCyanobacteriabiologyAnabaena030106 microbiologyBiodegradationbiology.organism_classificationLyasePhotosynthesisMicrobiologyPhosphonateDTPMP03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryBiochemistryEcology Evolution Behavior and SystematicsAnabaena variabilisEnvironmental Microbiology
researchProduct