0000000000221508

AUTHOR

K. Graham

showing 4 related works from this author

Search for New Phenomena in Final States with Two Leptons and One or No b -Tagged Jets at s=13  TeV Using the ATLAS Detector

2021

A search for new phenomena is presented in final states with two leptons and one or no $b$-tagged jets. The event selection requires the two leptons to have opposite charge, the same flavor (electrons or muons), and a large invariant mass. The analysis is based on the full Run-2 proton-proton collision dataset recorded at a center-of-mass energy of $\sqrt{s} = 13$ TeV by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant deviation from the expected background is observed in the data. A four-fermion contact interaction between two quarks ($b,s$) and two leptons ($ee$ or $\mu\mu$), inspired by the $B$-meson decay anomalies, is used as a…

QuarkPhysicsParticle physicsMuonLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyATLAS experimentGeneral Physics and AstronomyLambdaCoupling (probability)7. Clean energy01 natural sciences0103 physical sciencesHigh Energy Physics::ExperimentInvariant mass010306 general physicsLeptonPhysical Review Letters
researchProduct

The liquid-argon scintillation pulseshape in DEAP-3600

2020

AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…

PhotomultiplierPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterFOS: Physical scienceslcsh:AstrophysicsScintillatorWavelength shifter01 natural sciencesParticle detectorDEAPOptics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)PhysicsScintillation010308 nuclear & particles physicsbusiness.industryInstrumentation and Detectors (physics.ins-det)Scintillation counterlcsh:QC770-798businessEuropean Physical Journal C: Particles and Fields
researchProduct

Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory

2002

Observations of neutral current neutrino interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current, elastic scattering, and charged current reactions and assuming the standard 8B shape, the electron-neutrino component of the 8B solar flux is 1.76 +/-0.05(stat.)+/-0.09(syst.) x10^6/(cm^2 s), for a kinetic energy threshold of 5 MeV. The non-electron neutrino component is 3.41+/-0.45(stat.)+0.48,-0.45(syst.) x10^6/(cm^2 s), 5.3 standard deviations greater than zero, providing strong evidence for solar electron neutrino flavor transformation. The total flux measured with the NC reaction is 5.09 +0.44,-0.43(stat.)+0.46,-0.43(syst.)x10^6/(cm^2 s), consi…

Particle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tau neutrino0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentNuclear ExperimentPhysicsSudbury Neutrino Observatory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemNeutrino detectorHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoLepton
researchProduct

Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters

2002

The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted $^8$B spectrum, the night minus day rate is $14.0% \pm 6.3% ^{+1.5}_{-1.4}%$ of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the $\nu_e$ asymmetry is found to be $7.0% \pm 4.9% ^{+1.3}_{-1.2}%$. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution.

Astrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesNuclear astrophysicsNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsCharged currentPhysicsSudbury Neutrino Observatory010308 nuclear & particles physicsAstrophysics (astro-ph)High Energy Physics::Phenomenology13. Climate actionHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrino
researchProduct