0000000000222356

AUTHOR

D. Rostron

Evidence for prolate structure in light Pb isotopes from in-beamγ-ray spectroscopy ofPb185

For the first time, excited states in {sup 185}Pb have been observed in in-beam {gamma}-ray spectroscopic measurements using the recoil-decay tagging method. The resulting level scheme reveals a strongly coupled yrast band structure that originates from coupling of the i{sub 13/2} quasineutron to a prolate deformed core. The band is also observed to de-excite via the spherical {alpha}-decaying 13/2{sup +}isomeric state.

research product

Search for a 2-quasiparticle high-Kisomer inRf256

The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {a…

research product

Decay study of 246Fm at SHIP

The decay chain of 246Fm has been investigated employing the SHIP separator at GSI Darmstadt. The 246Fm nuclei were produced via the 40Ar(208Pb, 2n)246Fm fusion-evaporation reaction. Improved values of the half-life, T 1/2 = 1.54(4) s, and of the spontaneous fission branching ratio, b SF = 0.068(6) , of 246Fm were obtained. The $ \beta^{+}_{}$ /electron capture branching ratio, b EC = 0.39(3) , of 242Cf was deduced. Possible structures of high-K states in 246Fm are discussed within the framework of a model calculation based on the Woods-Saxon potential.

research product

γ-Ray Spectroscopy at the Limits: First Observation of Rotational Bands inLr255

The rotational band structure of Lr-255 has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, Lr-255 is the heaviest nucleus to be studied in this manner. One ro ...

research product

High-Kstructure inFm250and the deformed shell gaps atN=152andZ=100

The structure of high-spin and nonyrast states of the transfermium nucleus $^{250}\mathrm{Fm}$ has been studied in detail. The isomeric nature of a two-quasiparticle excitation has been exploited in order to obtain spectroscopic data of exceptional quality. The data allow the configuration of an isomer first discovered over 30 years ago to be deduced, and provide an unambiguous determination of the location of neutron single-particle states in a very heavy nucleus. A comparison to the known two-quasiparticle structure of $^{254,252}\mathrm{No}$ confirms the existence of the deformed shell gaps at $N=152$ and $Z=100$.

research product

Bridging the nuclear structure gap between stable and super heavy nuclei

International audience; Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapo…

research product