0000000000223131

AUTHOR

Massimo Camarda

0000-0003-2797-8802

Study of the role of particle-particle dipole interaction in dielectrophoretic devices for biomarkers identification

A three dimensional Coupled Monte Carlo-Poisson method has been used to evaluate the impact of particle-particle dipole interactions in the equilibrium distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. We compare the simulated distributions with experimental ones both for micro- (MDA-MB-231 breast tumor cells) and nano-(multiwall carbon nanotubes) particles. In both cases the equilibrium distributions near the electrodes are dominated by dipole interactions which locally enhance the DEP effect and promote long particles chains.

research product

Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes

BACKGROUND: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. METHODS: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. RESULTS: The real and simulated distributions are consistent. In both cases the cells distribution near the elec…

research product

General interpolation scheme for thermal fluctuations in superconductors

We present a general interpolation theory for the phenomenological effects of thermal fluctuations in superconductors. Fluctuations are described by a simple gauge invariant extension of the gaussian effective potential for the Ginzburg-Landau static model. The approach is shown to be a genuine variational method, and to be stationary for infinitesimal gauge variations around the Landau gauge. Correlation and penetration lengths are shown to depart from the mean field behaviour in a more or less wide range of temperature below the critical regime, depending on the class of material considered. The method is quite general and yields a very good interpolation of the experimental data for very…

research product

Near-Infrared-Responsive Choline-Calix[4]arene-Gold Nanostructures for Potential Photothermal Cancer Treatment

The development of novel chemical approaches for the fabrication of gold nanostructures with localized surface plasmon resonance (LSPR) falling in the near-infrared (NIR) region is one challenging topic in nanomaterials science. Due to their optical and photothermal properties triggered by light excitation in the therapeutic window (λmax = 650-1300 nm), gold-based nanostructures are appealing candidates in anticancer nanomedicine. Here, we report a novel method to prepare water-dispersible gold nanostructures with NIR-LSPR (λmax = 600-1000 nm) properties. The gold nanostructures were achieved in a single step by an unconventional method using NADH as a reducing agent and an amphiphilic chol…

research product

First Characterization of Novel Silicon Carbide Detectors with Ultra-High Dose Rate Electron Beams for FLASH Radiotherapy

Ultra-high dose rate (UHDR) beams for FLASH radiotherapy present significant dosimetric challenges. Although novel approaches for decreasing or correcting ion recombination in ionization chambers are being proposed, applicability of ionimetric dosimetry to UHDR beams is still under investigation. Solid-state sensors have been recently investigated as a valuable alternative for real-time measurements, especially for relative dosimetry and beam monitoring. Among them, Silicon Carbide (SiC) represents a very promising candidate, compromising between the maturity of Silicon and the robustness of diamond. Its features allow for large area sensors and high electric fields, required to avoid ion r…

research product