0000000000223281

AUTHOR

Julian Rüdiger

showing 7 related works from this author

Halogen activation in the plume of Masaya volcano: field observations and box model investigations

2020

Volcanic emissions are a source of halogens in the atmosphere. Rapid reactions convert the initially emitted hydrogen halides (HCl, HBr, and HI) into reactive species such as BrO, Br2, BrCl, ClO, OClO, and IO. The activation reaction mechanisms in the plume consume ozone (O3), which is entrained by ambient air that is mixed into the plume. In this study, we present observations of the oxidation of bromine, chlorine, and iodine during the first 11 min following emission, examining the plume from Santiago crater of the Masaya volcano in Nicaragua. Two field campaigns were conducted: one in July 2016 and one in September 2016. The sum of the reactive species of each halogen was determined by g…

540 Chemistry and allied sciencesOzoneBromine010504 meteorology & atmospheric sciencesHydrogenAnalytical chemistrychemistry.chemical_element01 natural scienceslcsh:QC1-999550 GeowissenschaftenPlumelcsh:Chemistrychemistry.chemical_compoundchemistryImpact craterlcsh:QD1-999550 Earth sciences540 ChemieHalogenChlorineEnvironmental scienceNOxlcsh:Physics0105 earth and related environmental sciences
researchProduct

Magmatic signature in acid rain at Masaya volcano, Nicaragua: Inferences on element volatility during lava lake degassing

2021

Abstract Major, minor and trace element concentrations of single rainfall events were investigated at Masaya volcano (Nicaragua) in order to determine the relative contributions of volcanogenic elements. Most of the samples were collected in the summit area of the volcano around the Santiago crater, and two samples, representative of the local background, were collected at a 4.3 km upwind site. Samples from the summit are very acidic with pH down to 2.14 and contain large amounts of volcanogenic elements that can be clearly distinguished from the local background. These elements are released into the atmosphere from the continuously degassing lava lake of the Santiago crater, Masaya volcano…

geographygeography.geographical_feature_categoryLavaGeochemistryTrace elementGeologySilicatechemistry.chemical_compoundchemistryVolcanoImpact craterGeochemistry and PetrologyMineral redox bufferMagmaAcid rainGeologyChemical Geology
researchProduct

Advances in Bromine Speciation in Volcanic Plumes

2018

Volcanoes are a significant halogen source to the atmosphere. After water, carbon dioxide and sulfur compounds, halogens are often the most abundant gases in volcanic plumes. In the past, less attention was given to the heavy halogens bromine and iodine. However, the discovery of bromine monoxide (BrO) in volcanic plumes led to new interest especially in volcanic bromine chemistry and its impact on atmospheric processes. The BrO detection came along with advances in volcanic remote sensing techniques, in particular, robust DOAS applications and the possibility of continuous measurements by automated instruments located at safe distances from the volcano. As one of the consequences, the volc…

volcanic plumesvolcanic halogen emissionsbromine explosionbromine speciationgas monitoringlcsh:Qlcsh:Scienceplume chemistryFrontiers in Earth Science
researchProduct

Supplementary material to "Halogen activation in the plume of Masaya volcano: field observations and box model investigations"

2020

researchProduct

Multicopter measurements of volcanic gas emissions at Masaya (Nicaragua), Turrialba (Costa Rica) and Stromboli (Italy) volcanoes: Applications for vo…

2017

Abstract. Volcanoes are a natural source of several reactive gases (e.g. sulfur and halogen containing species), as well as non-reactive gases (e.g. carbon dioxide). Besides that, halogen chemistry in volcanic plumes might have important impacts on atmospheric chemistry, carbon to sulfur ratios and sulfur dioxide fluxes are important established parameters to gain information on subsurface processes. In this study we demonstrate the successful deployment of a multirotor UAV (quadcopter) system with custom-made lightweight payloads on board for the compositional analysis and gas flux estimation of volcanic plumes. The various applications and their potential with such new measurement strateg…

geographygeography.geographical_feature_categoryDifferential optical absorption spectroscopyMineralogychemistry.chemical_elementSulfurPlumechemistry.chemical_compoundFlux (metallurgy)VolcanochemistryAtmospheric chemistryGas compositionGeologySulfur dioxide
researchProduct

Plume composition and volatile flux of Nyamulagira volcano, Democratic Republic of Congo, during birth and evolution of the lava lake, 2014-2015

2017

Very little is known about the volatile element makeup of the gaseous emissions of Nyamulagira volcano. This paper tries to fill this gap by reporting the first gas composition measurements of Nyamulagira’s volcanic plume since the onset of its lava lake activity at the end of 2014. Two field surveys were carried out on 1 November 2014, and 13–15 October 2015. We applied a broad toolbox of volcanic gas composition measurement techniques in order to geochemically characterize Nyamulagira’s plume. Nyamulagira is a significant emitter of SO2, and our measurements confirm this, as we recorded SO2 emissions of up to ~ 14 kt/d during the studied period. In contrast to neighbouring Nyiragongo volc…

geographygeography.geographical_feature_categoryBromine010504 meteorology & atmospheric sciencesHydrogenLavaFluxMineralogychemistry.chemical_elementNyamulagira Plume composition Total gas flux010502 geochemistry & geophysics01 natural sciencesPlumechemistry.chemical_compoundVolcanochemistryGeochemistry and PetrologyGas compositionHydrogen chlorideGeology0105 earth and related environmental sciences
researchProduct

Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes

2020

Aerial measurements using unoccupied aerial systems (UAS) transform our ability to measure and monitor volcanic plumes.

010504 meteorology & atmospheric sciencessub-053705 Geology010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesMantle (geology)Carbon cycleVolcanic GasesFlux (metallurgy)eventResearch Articles0105 earth and related environmental sciencesevent.disaster_typegeographyMultidisciplinarygeography.geographical_feature_categorySciAdv r-articlesSampling (statistics)Sediment37 Earth Sciences3703 GeochemistryPlumeApplied Sciences and EngineeringVolcanoPhysical SciencesManam volcanic gases UASResearch ArticleScience Advances
researchProduct