0000000000223282
AUTHOR
John Stix
Halogen activation in the plume of Masaya volcano: field observations and box model investigations
Volcanic emissions are a source of halogens in the atmosphere. Rapid reactions convert the initially emitted hydrogen halides (HCl, HBr, and HI) into reactive species such as BrO, Br2, BrCl, ClO, OClO, and IO. The activation reaction mechanisms in the plume consume ozone (O3), which is entrained by ambient air that is mixed into the plume. In this study, we present observations of the oxidation of bromine, chlorine, and iodine during the first 11 min following emission, examining the plume from Santiago crater of the Masaya volcano in Nicaragua. Two field campaigns were conducted: one in July 2016 and one in September 2016. The sum of the reactive species of each halogen was determined by g…
Supplementary material to "Halogen activation in the plume of Masaya volcano: field observations and box model investigations"
Insights on Hydrothermal‐Magmatic Interactions and Eruptive Processes at Poás Volcano (Costa Rica) From High‐Frequency Gas Monitoring and Drone Measurements
Texto completo del documento Identification of unambiguous signals of volcanic unrest is crucial in hazard assessment. Processes leading to phreatic and phreatomagmatic eruptions remain poorly understood, inhibiting effective eruption forecasting. Our 5‐year gas record from Poás volcano, combined with geophysical data, reveals systematic behavior associated with hydrothermal‐magmatic eruptions. Three eruptive episodes are covered, each with distinct geochemical and geophysical characteristics. Periods with larger eruptions tend to be associated with stronger excursions in monitoring data, particularly in SO2/CO2 and SO2 flux. The explosive 2017 phreatomagmatic eruption was the largest erupt…