0000000000223484

AUTHOR

Rashid Rezaei

showing 3 related works from this author

Commuting powers and exterior degree of finite groups

2011

In [P. Niroomand, R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335-343] it is introduced a group invariant, related to the number of elements $x$ and $y$ of a finite group $G$, such that $x \wedge y = 1_{G \wedge G}$ in the exterior square $G \wedge G$ of $G$. This number gives restrictions on the Schur multiplier of $G$ and, consequently, large classes of groups can be described. In the present paper we generalize the previous investigations on the topic, focusing on the number of elements of the form $h^m \wedge k$ of $H \wedge K$ such that $h^m \wedge k = 1_{H \wedge K}$, where $m \ge 1$ and $H$ and $K$ are arbitrary subgroups of $G$.

Combinatorics20J99 20D15 20D60 20C25General MathematicsMathematics - K-Theory and HomologyFOS: MathematicsHomological algebraK-Theory and Homology (math.KT)Invariant (mathematics)Exterior algebraMathematicsSchur multiplier
researchProduct

Bounds for the relative n-th nilpotency degree in compact groups

2009

The line of investigation of the present paper goes back to a classical work of W. H. Gustafson of the 1973, in which it is described the probability that two randomly chosen group elements commute. In the same work, he gave some bounds for this kind of probability, providing information on the group structure. We have recently obtained some generalizations of his results for finite groups. Here we improve them in the context of the compact groups.

Degree (graph theory)Group (mathematics)General MathematicsProbability (math.PR)20P05 22A05 28C10 22A20 43A05Context (language use)Group Theory (math.GR)Group structureCombinatoricsLine (geometry)FOS: MathematicsMathematics - Group TheoryMathematics - ProbabilityHaar measureMathematics
researchProduct

$n$-th relative nilpotency degree and relative $n$-isoclinism classes

2011

P. Hall introduced the notion of isoclinism between two groups more than 60 years ago. Successively, many authors have extended such a notion in different contexts. The present paper deals with the notion of relative n-isoclinism, given by N. S. Hekster in 1986, and with the notion of n-th relative nilpotency degree, recently introduced in literature.

CombinatoricsSettore MAT/02 - AlgebraSettore MAT/05 - Analisi MatematicaGeneral MathematicsFOS: Mathematicsnilpotency degree commutativity degree Haar measure $p$-groupsGroup Theory (math.GR)Settore MAT/03 - GeometriaMathematics - Group TheoryHaar measureDegree (temperature)Mathematics
researchProduct