0000000000223547
AUTHOR
Antonio Soriano
Detector blockbased on arrays of 144 SiPMs and monolithic scintillators: A performane study
[EN] We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12 12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured. & 2014 Elsevier B.V. All…
Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices
An extension of the finite difference time domain is applied to solve the Schrödinger equation. A systematic analysis of stability and convergence of this technique is carried out in this article. The numerical scheme used to solve the Schrödinger equation differs from the scheme found in electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee cell used by the electrical engineering community. A bound for the time step is derived to ensure stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second order, comparable to the analysis of electromagnetic devices with the Yee cell. a!Electronic mail: Antonio.Sorian…
Underwater Multirobot Cooperative Intervention MAC Protocol
This work introduces a Medium Access Control (MAC) protocol designed to allow a group of underwater robots that share a wireless communication channel to effectively communicate with each other. The goal of the Underwater Multirobot Cooperative Intervention MAC (UMCI-MAC) protocol presented in this work is to minimize the end to end delay and the jitter. The access to the medium in UMCI-MAC follows a Time Division Multiple Access (TDMA) strategy which is arbitrated by a master, which also has the capability to prioritize the transmission of some nodes over the rest of the network. Two experiments have been carried out with a team of four Autonomous Underwater Vehicles (AUV) in order to comp…
A finite difference time domain model for the Titan ionosphere Schumann resonances
[1] This paper presents a numerical approach to model the electrical properties of Titan's atmosphere. The finite difference time domain technique is applied to model the atmosphere of Saturn's satellite in order to determine Schumann resonant frequencies and electromagnetic field distributions at the extremely low frequency range. Spherical coordinates are employed, and periodic boundary conditions are implemented in order to exploit the symmetry in rotation of the celestial body. Results are compared with a previous model using the transmission line matrix method up to 180 km altitude. For the first time a numerical FDTD model up to 800 km altitude is carried out, and we report lower freq…
QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms
[EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for…
UWSim-NET: An Open-Source Framework for Experimentation in Communications for Underwater Robotics
The communication with the remotely operated vehicles (ROV) in underwater applications are usually based on umbilical cables. The increase in the number of ROVs in cooperative interventions motivates the interest in underwater wireless communications. They have a high impact in robotic applications because of their limited performance in underwater scenarios. In this work we present UWSim-NET, an extension of the simulator for underwater robotics UWSim, which is based on the Robot Operating System (ROS). UWSim-NET integrates a communications module based on Network Simulator 3 (NS3) that allows to model the physical and data link layers. Experiments demonstrating the capabilities of UWSim-N…
Numerical analysis of ionosphere disturbances and Schumann mode splitting in the Earth-ionosphere cavity
[1] The variability of ionosphere properties plays an important role in the Schumann resonances (SR), amplitudes, frequencies, and Q factor. Therefore, as atmosphere ionization is related to solar activity, SR could be devised as a source of indirect parameters that locally from the surface of the Earth could provide space weather information. A proper understanding of this link to SR parameters can be obtained through finite difference time domain (FDTD) simulations, specifically with the numerically obtained modes and frequencies that relate frequency shifts to the day-night asymmetry and polar inhomogeneities. Day-Night asymmetry is observed to have a minor influence in SR; however, larg…
Wireless HROV Control with Compressed Visual Feedback Using Acoustic and RF Links
AbstractUnderwater cooperative robotics offers the possibility to perform challenging intervention applications, such as recovering archeological objects as within the context of the MERBOTS research project, or grasping, transporting and assembly of big objects, using more than one mobile manipulator, as faced by the TWINBOT project. In order to enhance safety during the intervention, it is reasonable to avoid the umbilical, also giving more mobility to the robots, and enabling a broader set of cooperative movements. Several solutions, based on acoustic, radiofrequency (RF) or Visual Light Communication (VLC) have been proposed for underwater communications in the literature. This paper pr…
A neural network-based approach to determine FDTD eigenfunctions in quantum devices
This article combines a Neural Network (NN) algorithm with the Finite Difference Time Domain (FDTD) technique to estimate the eigenfunctions in quantum devices. A NN based on the Least Mean Squares (LMS) algorithm is combined with the FDTD technique to provide a first approach to the confined states in quantum wires. The proposed technique is in good agreement with analytical results and is more efficient than FDTD combined with the Fourier Transform. This technique is used to cal- culate a numerical approximation to the eigenfunctions associated to quan- tum wire potentials. The performance and convergence of the proposed technique are also presented in this article. © 2009 Wiley Periodica…
Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector
CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can b…
A numerical study of the Schumann resonances in Mars with the FDTD method
[1] Natural electromagnetic waves generated near the surface by electrostatic discharges in dust storms (dust devils) or by geological activity could be trapped in the resonant cavity formed by the surface and lower ionosphere of Mars, as it occurs on Earth giving rise to Schumann resonances. The finite difference time-domain technique (FDTD) is applied to model the atmosphere of Mars in order to determine Schumann resonant frequencies, and natural electromagnetic fields at the extremely low frequency range (ELF). A numerical tool is provided to analyze the electrical conductivity profile of the Martian atmosphere, with the aim of obtaining Schumann resonance frequencies and their dependenc…