0000000000223563
AUTHOR
L. De Sá
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…
Effects of radiation in accretion regions of classical T Tauri stars
Context. Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns where optically thin and thick plasma components coexist. Thus, an accurate description of these impacts is necessary to account for the effects of absorption and emission of radiation. Aims. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock down-falling material. We investigate whether a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. Methods. We developed a radiation hydrodynamics model describing an accreti…
3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects
AbstractThe structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas …
Effects of radiation in accretion regions of classical T Tauri stars
Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns, in which optically thin and thick plasma components coexist. Thus an accurate description of these impacts requires to account for the effects of absorption and emission of radiation. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock downfalling material. We investigate if a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. We developed a radiation hydrodynamics model describing an accretion column impacting onto the su…
3D numerical modeling of YSO accretion shocks
International audience; The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modeling locally the impact of the infalling gas onto the chromosphere. We find t…
YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission
Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of seve…
3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects
International audience; We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation) under our "gray LTE approach", i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magne-tohydrodynamic) structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of …
Radiation Magnetohydrodynamic Models and Spectral Signatures of Plasma Flows Accreting onto Classical T Tauri Stars
CTTSs are young stars accreting mass from their circumstellar disks. The material falls into the star at free fall velocity and hits the stellar surface producing shocks, that heat the plasma at few million degrees. In the last twenty years the X-ray and UV observations of these systems have raised several questions. In particular, the observed X-ray luminosity is systematically below the value predicted by theoretical models, and the UV lines show complex profiles which cannot be easily interpreted with current accretion models based only on magnetohydrodynamical effects. To tackle these problems we modeled the structure and the dynamics of the plasma in the impact region using 3D magnetoh…