0000000000223573
AUTHOR
Thomas Franosch
Fluids in extreme confinement.
For extremely confined fluids with two-dimensional density $n$ in slit geometry of accessible width $L$, we prove that in the limit $L\to 0$ the lateral and transversal degrees of freedom decouple, and the latter become ideal-gas-like. For small wall separation the transverse degrees of freedom can be integrated out and renormalize the interaction potential. We identify $n L^2 $ as hidden smallness parameter of the confinement problem and evaluate the effective two-body potential analytically, which allows calculating the leading correction to the free energy exactly. Explicitly, we map a fluid of hard spheres in extreme confinement onto a 2d-fluid of disks with an effective hard-core diame…
Structural quantities of quasi-two-dimensional fluids
Quasi-two-dimensional fluids can be generated by confining a fluid between two parallel walls with narrow separation. Such fluids exhibit an inhomogeneous structure perpendicular to the walls due to the loss of translational symmetry. Taking the transversal degrees of freedom as a perturbation to an appropriate 2D reference fluid we provide a systematic expansion of the $m$-particle density for arbitrary $m$. To leading order in the slit width this density factorizes into the densities of the transversal and lateral degrees of freedom. Explicit expressions for the next-to-leading order terms are elaborated analytically quantifying the onset of inhomogeneity. The case $m=1$ yields the densit…
Anomalous magneto-transport in disordered structures: classical edge-state percolation
By event-driven molecular dynamics simulations we investigate magneto-transport in a two-dimensional model with randomly distributed scatterers close to the field-induced localization transition. This transition is generated by percolating skipping orbits along the edges of obstacle clusters. The dynamic exponents differ significantly from those of the conventional transport problem on percolating systems, thus establishing a new dynamic universality class. This difference is tentatively attributed to a weak-link scenario, which emerges naturally due to barely overlapping edge trajectories. We make predictions for the frequency-dependent conductivity and discuss implications for active coll…
Mode-coupling theory of the glass transition for confined fluids
We present a detailed derivation of a microscopic theory for the glass transition of a liquid enclosed between two parallel walls relying on a mode-coupling approximation. This geometry lacks translational invariance perpendicular to the walls, which implies that the density profile and the density-density correlation function depends explicitly on the distances to the walls. We discuss the residual symmetry properties in slab geometry and introduce a symmetry adapted complete set of two-point correlation functions. Since the currents naturally split into components parallel and perpendicular to the walls the mathematical structure of the theory differs from the established mode-coupling eq…
Light-scattering spectra of supercooled molecular liquids
The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.
Mode-coupling theory for multiple decay channels
We investigate the properties of a class of mode-coupling equations for the glass transition where the density mode decays into multiple relaxation channels. We prove the existence and uniqueness of the solutions for Newtonian as well as Brownian dynamics and demonstrate that they fulfill the requirements of correlation functions, in the latter case the solutions are purely relaxational. Furthermore, we construct an effective mode-coupling functional which allows to map the theory to the case of a single decay channel, such that the covariance principle found for the mode-coupling theory for simple liquids is properly generalized. This in turn allows establishing the maximum theorem stating…
Glassy dynamics in confinement: planar and bulk limits of the mode-coupling theory.
We demonstrate how the matrix-valued mode-coupling theory of the glass transition and glassy dynamics in planar confinement converges to the corresponding theory for two-dimensional (2D) planar and the three-dimensional bulk liquid, provided the wall potential satisfies certain conditions. Since the mode-coupling theory relies on the static properties as input, the emergence of a homogeneous limit for the matrix-valued intermediate scattering functions is directly connected to the convergence of the corresponding static quantities to their conventional counterparts. We show that the 2D limit is more subtle than the bulk limit, in particular, the in-planar dynamics decouples from the motion …
Glass transition in confined geometry.
Extending mode-coupling theory, we elaborate a microscopic theory for the glass transition of liquids confined between two parallel flat hard walls. The theory contains the standard MCT equations in bulk and in two dimensions as limiting cases and requires as input solely the equilibrium density profile and the structure factors of the fluid in confinement. We evaluate the phase diagram as a function of the distance of the plates for the case of a hard sphere fluid and obtain an oscillatory behavior of the glass transtion line as a result of the structural changes related to layering.