0000000000223752

AUTHOR

Francesco Marletta

A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning

The aim of this study is to combine Biological Target Volume (BTV) segmentation and Gross Target Volume (GTV) segmentation in stereotactic neurosurgery.Our goal is to enhance Clinical Target Volume (CTV) definition, including metabolic and morphologic information, for treatment planning and patient follow-up.We propose a fully automatic approach for multimodal PET and MR image segmentation. This method is based on the Random Walker (RW) and Fuzzy C-Means clustering (FCM) algorithms. A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is presented, considering volume…

research product

Biological target volume segmentation for radiotherapy treatment planning

research product

Clinical support in radiation therapy scenarios: MR brain tumor segmentation using an unsupervised fuzzy C-Means clustering technique

research product

Gamma Knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised Fuzzy C-Means clustering

Nowadays, radiation treatment is beginning to intensively use MRI thanks to its greater ability to discriminate healthy and diseased soft-tissues. Leksell Gamma Knife® is a radio-surgical device, used to treat different brain lesions, which are often inaccessible for conventional surgery, such as benign or malignant tumors. Currently, the target to be treated with radiation therapy is contoured with slice-by-slice manual segmentation on MR datasets. This approach makes the segmentation procedure time consuming and operator-dependent. The repeatability of the tumor boundary delineation may be ensured only by using automatic or semiautomatic methods, supporting clinicians in the treatment pla…

research product

Using anatomic and metabolic imaging in stereotactic radio neuro-surgery treatments

research product

Semi-automatic Brain Lesion Segmentation in Gamma Knife Treatments Using an Unsupervised Fuzzy C-Means Clustering Technique

MR Imaging is being increasingly used in radiation treatment planning as well as for staging and assessing tumor response. Leksell Gamma Knife (R) is a device for stereotactic neuro-radiosurgery to deal with inaccessible or insufficiently treated lesions with traditional surgery or radiotherapy. The target to be treated with radiation beams is currently contoured through slice-by-slice manual segmentation on MR images. This procedure is time consuming and operator-dependent. Segmentation result repeatability may be ensured only by using automatic/semi-automatic methods with the clinicians supporting the planning phase. In this paper a semi-automatic segmentation method, based on an unsuperv…

research product