0000000000223956

AUTHOR

A.-m. Uimonen

Correlation effects in bistability at the nanoscale: Steady state and beyond

The possibility of finding multistability in the density and current of an interacting nanoscale junction coupled to semi-infinite leads is studied at various levels of approximation. The system is driven out of equilibrium by an external bias and the nonequilibrium properties are determined by real-time propagation using both time-dependent density functional theory (TDDFT) and many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects are described within a recently proposed adiabatic local density approximation (ALDA). In MBPT the electron-electron interaction is incorporated in a many-body self-energy which is then approximated at the Hartree-Fock (HF), second-Born,…

research product

Approximate energy functionals for one-body reduced density matrix functional theory from many-body perturbation theory

We develop a systematic approach to construct energy functionals of the one-particle reduced density matrix (1RDM) for equilibrium systems at finite temperature. The starting point of our formulation is the grand potential $\Omega [\mathbf{G}]$ regarded as variational functional of the Green's function $G$ based on diagrammatic many-body perturbation theory and for which we consider either the Klein or Luttinger-Ward form. By restricting the input Green's function to be one-to-one related to a set on one-particle reduced density matrices (1RDM) this functional becomes a functional of the 1RDM. To establish the one-to-one mapping we use that, at any finite temperature and for a given 1RDM $\…

research product

Diagrammatic expansion for positive density-response spectra: Application to the electron gas

In a recent paper [Phys. Rev. B 90, 115134 (2014)] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density response function. We write the generic diagram for the density-response spectrum as the sum of partitions. In a partition the original diagram is evaluated using time-ordered Green's functions (GF) on the left-half of the diagram, antitime-ordered GF on the right-half of the diagram and lesser or greater GF gluing the two halves. As there exist more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most co…

research product

Ultra-nonlocality in density functional theory for photo-emission spectroscopy.

We derive an exact expression for the photo-current of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photo-current within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of…

research product

Vertex corrections for positive-definite spectral functions of simple metals

We present a systematic study of vertex corrections in the homogeneous electron gas at metallic densities. The vertex diagrams are built using a recently proposed positive-definite diagrammatic expansion for the spectral function. The vertex function not only provides corrections to the well known plasmon and particle-hole scatterings, but also gives rise to new physical processes such as generation of two plasmon excitations or the decay of the one-particle state into a two-particles-one-hole state. By an efficient Monte Carlo momentum integration we are able to show that the additional scattering channels are responsible for the bandwidth reduction observed in photoemission experiments on…

research product

Diagrammatic expansion for positive spectral functions beyond GW : Application to vertex corrections in the electron gas

We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-steps procedure: we first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions whereas those…

research product

Real-time switching between multiple steady-states in quantum transport

Creative Commons Attribution License 3.0.

research product

First-principles nonequilibrium Green's-function approach to transient photoabsorption: Application to atoms

We put forward a first-principle NonEquilibrium Green's Function (NEGF) approach to calculate the transient photoabsorption spectrum of optically thin samples. The method can deal with pump fields of arbitrary strength, frequency and duration as well as for overlapping and nonoverlapping pump and probe pulses. The electron-electron repulsion is accounted for by the correlation self-energy, and the resulting numerical scheme deals with matrices that scale quadratically with the system size. Two recent experiments, the first on helium and the second on krypton, are addressed. For the first experiment we explain the bending of the Autler-Townes absorption peaks with increasing the pump-probe d…

research product

Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model

We study time-dependent electron transport through an Anderson model. The electronic interactions on the impurity site are included via the self-energy approximations at Hartree-Fock (HF), second Born (2B), GW, and T-matrix levels as well as within a time-dependent density functional (TDDFT) scheme based on the adiabatic Bethe-ansatz local density approximation (ABALDA) for the exchange-correlation potential. The Anderson model is driven out of equilibrium by applying a bias to the leads, and its nonequilibrium dynamics is determined by real-time propagation. The time-dependent currents and densities are compared to benchmark results obtained with the time-dependent density matrix renormali…

research product

Charge dynamics in molecular junctions: nonequilibrium Green's function approach made fast

Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: first we show how to make the GKBA work in open systems and then construct a suitable quasi-particle propagator that includes correlation effects …

research product

Time-resolved photoabsorption in finite systems: A first-principles NEGF approach

We describe a first-principles NonEquilibrium Green’s Function (NEGF) approach to time-resolved photoabsortion spectroscopy in atomic and nanoscale systems. The method is used to highlight a recently discovered dynamical correlation effect in the spectrum of a Krypton gas subject to a strong ionizing pump pulse. We propose a minimal model that captures the effect, and study the performance of time-local approximations versus time-nonlocal ones. In particular we implement the time-local Hartree-Fock and Markovian second Born (2B) approximation as well as the exact adiabatic approximation within the Time-Dependent Density Functional Theory framework. For the time-nonlocal approximation we ins…

research product