0000000000224009

AUTHOR

Sebastiano Boscarino

Approximate Taylor methods for ODEs

Abstract A new method for the numerical solution of ODEs is presented. This approach is based on an approximate formulation of the Taylor methods that has a much easier implementation than the original Taylor methods, since only the functions in the ODEs, and not their derivatives, are needed, just as in classical Runge–Kutta schemes. Compared to Runge–Kutta methods, the number of function evaluations to achieve a given order is higher, however with the present procedure it is much easier to produce arbitrary high-order schemes, which may be important in some applications. In many cases the new approach leads to an asymptotically lower computational cost when compared to the Taylor expansio…

research product

Reprint of: Approximate Taylor methods for ODEs

Abstract A new method for the numerical solution of ODEs is presented. This approach is based on an approximate formulation of the Taylor methods that has a much easier implementation than the original Taylor methods, since only the functions in the ODEs, and not their derivatives, are needed, just as in classical Runge–Kutta schemes. Compared to Runge–Kutta methods, the number of function evaluations to achieve a given order is higher, however with the present procedure it is much easier to produce arbitrary high-order schemes, which may be important in some applications. In many cases the new approach leads to an asymptotically lower computational cost when compared to the Taylor expansio…

research product