0000000000224010

AUTHOR

David Zorío

showing 7 related works from this author

Approximate Taylor methods for ODEs

2017

Abstract A new method for the numerical solution of ODEs is presented. This approach is based on an approximate formulation of the Taylor methods that has a much easier implementation than the original Taylor methods, since only the functions in the ODEs, and not their derivatives, are needed, just as in classical Runge–Kutta schemes. Compared to Runge–Kutta methods, the number of function evaluations to achieve a given order is higher, however with the present procedure it is much easier to produce arbitrary high-order schemes, which may be important in some applications. In many cases the new approach leads to an asymptotically lower computational cost when compared to the Taylor expansio…

di Bruno's formulaODE integratorsGeneral Computer ScienceTaylor methodsComputer Science (all)MathematicsofComputing_NUMERICALANALYSISGeneral EngineeringOde010103 numerical & computational mathematicsFunction (mathematics)Present procedure01 natural sciencesFaà di Bruno's formula; ODE integrators; Taylor methods; Computer Science (all); Engineering (all)010101 applied mathematicssymbols.namesakeEngineering (all)FaÃ&nbspTaylor seriessymbolsCalculusApplied mathematics0101 mathematicsMathematics
researchProduct

High Order Extrapolation Techniques for WENO Finite-Difference Schemes Applied to NACA Airfoil Profiles

2017

Finite-difference WENO schemes are capable of approximating accurately and efficiently weak solutions of hyperbolic conservation laws. In this context high order numerical boundary conditions have been proven to increase significantly the resolution of the numerical solutions. In this paper a finite-difference WENO scheme is combined with a high order boundary extrapolation technique at ghost cells to solve problems involving NACA airfoil profiles. The results obtained are comparable with those obtained through other techniques involving unstructured meshes.

Conservation lawExtrapolationFinite differenceBoundary (topology)Context (language use)010103 numerical & computational mathematics01 natural sciencesNACA airfoil010101 applied mathematicsApplied mathematicsPolygon meshBoundary value problem0101 mathematicsMathematics
researchProduct

Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

2017

Abstract The Lax–Wendroff time discretization is an alternative method to the popular total variation diminishing Runge–Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and efficient than RKDG methods of comparable order of accuracy, the formulation of LWDG methods involves the successive computation of exact flux derivatives. This procedure allows one to construct schemes of arbitrary formal order of accuracy in space and time. A new approximation procedure avoids the computation of ex…

Conservation lawLax–Wendroff theoremDiscretizationLax–Wendroff methodMathematical analysisOrder of accuracyCPU time010103 numerical & computational mathematics01 natural sciences010101 applied mathematicsComputational MathematicsComputational Theory and MathematicsDiscontinuous Galerkin methodModeling and SimulationTotal variation diminishing0101 mathematicsMathematicsComputers & Mathematics with Applications
researchProduct

High Order in Space and Time Schemes Through an Approximate Lax-Wendroff Procedure

2017

This paper deals with the scheme proposed by the authors in Zorio, Baeza and Mulet (J Sci Comput 71(1):246–273, 2017). This scheme is an alternative to the techniques proposed in Qiu and Shu (SIAM J Sci Comput 24(6):2185–2198, 2003) to obtain high-order accurate schemes using Weighted Essentially Non Oscillatory finite differences and approximating the flux derivatives required by the Cauchy-Kovalevskaya procedure by simple centered finite differences. We analyse how errors in first-order terms near discontinuities propagate through both versions of the Cauchy-Kovalevskaya procedure. We propose a fluctuation control, for which the approximation of the first-order derivative to be used in th…

Discrete mathematicsSpacetimeLax–Wendroff methodSimple (abstract algebra)Scheme (mathematics)Finite differenceApplied mathematicsFluxClassification of discontinuitiesInterpolationMathematics
researchProduct

Weighted Extrapolation Techniques for Finite Difference Methods on Complex Domains with Cartesian Meshes

2016

The design of numerical boundary conditions in high order schemes is a challenging problem that has been tackled in different ways depending on the nature of the problem and the scheme used to solve it numerically. In this paper we propose a technique to extrapolate the information from the computational domain to ghost cells for schemes with structured Cartesian Meshes on complex domains. This technique is based on the application of Lagrange interpolation with weighted filters for the detection of discontinuities that permits a data dependent extrapolation, with high order at smooth regions and essentially non oscillatory properties near discontinuities. This paper is a sequel of Baeza et…

Discrete mathematicsComputer scienceMathematicsofComputing_NUMERICALANALYSISExtrapolationFinite difference methodLagrange polynomialBoundary (topology)Classification of discontinuitieslaw.inventionsymbols.namesakelawsymbolsApplied mathematicsPolygon meshCartesian coordinate systemBoundary value problem
researchProduct

Reprint of: Approximate Taylor methods for ODEs

2018

Abstract A new method for the numerical solution of ODEs is presented. This approach is based on an approximate formulation of the Taylor methods that has a much easier implementation than the original Taylor methods, since only the functions in the ODEs, and not their derivatives, are needed, just as in classical Runge–Kutta schemes. Compared to Runge–Kutta methods, the number of function evaluations to achieve a given order is higher, however with the present procedure it is much easier to produce arbitrary high-order schemes, which may be important in some applications. In many cases the new approach leads to an asymptotically lower computational cost when compared to the Taylor expansio…

ODE integratorsGeneral Computer ScienceTaylor methodsMathematicsofComputing_NUMERICALANALYSISGeneral EngineeringOdeFunction (mathematics)Present procedure01 natural sciences010101 applied mathematicsFaà di Bruno's formulasymbols.namesakeTaylor seriessymbolsApplied mathematicsOrder (group theory)0101 mathematicsMathematicsComputers & Fluids
researchProduct

An order-adaptive compact approximation Taylor method for systems of conservation laws

2021

Abstract We present a new family of high-order shock-capturing finite difference numerical methods for systems of conservation laws. These methods, called Adaptive Compact Approximation Taylor (ACAT) schemes, use centered ( 2 p + 1 ) -point stencils, where p may take values in { 1 , 2 , … , P } according to a new family of smoothness indicators in the stencils. The methods are based on a combination of a robust first order scheme and the Compact Approximate Taylor (CAT) methods of order 2p-order, p = 1 , 2 , … , P so that they are first order accurate near discontinuities and have order 2p in smooth regions, where ( 2 p + 1 ) is the size of the biggest stencil in which large gradients are n…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)010103 numerical & computational mathematicsAdaptive high-order methods01 natural sciencesStencilsymbols.namesakeTaylor seriesFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsMathematicsConservation lawsFinite differencesNumerical AnalysisConservation lawSmoothnessApplied MathematicsNumerical analysisFinite differenceApproximate Taylor Lax-Wendroff methodsNumerical Analysis (math.NA)Computer Science ApplicationsEuler equations010101 applied mathematicsComputational MathematicsNonlinear systemModeling and Simulationsymbols
researchProduct