Crowd-Averse Cyber-Physical Systems: The Paradigm of Robust Mean-Field Games
For a networked controlled system, we illustrate the paradigm of robust mean-field games. This is a modeling framework at the interface of differential game theory, mathematical physics, and $H_{\infty}$ - optimal control that tries to capture the mutual influence between a crowd and its individuals. First, we establish a mean-field system for such games including the effects of adversarial disturbances. Second, we identify the optimal response of the individuals for a given population behavior. Third, we provide an analysis of equilibria and their stability.
Robust Mean Field Games with Application to Production of an Exhaustible Resource
International audience; In this paper, we study mean field games under uncertainty. We consider a population of players with individual states driven by a standard Brownian motion and a disturbance term. The contribution is three-fold: First, we establish a mean field system for such robust games. Second, we apply the methodology to an exhaustible resource production. Third, we show that the dimension of the mean field system can be significantly reduced by considering a functional of the first moment of the mean field process.
Game-Theoretic Learning and Allocations in Robust Dynamic Coalitional Games
The problem of allocation in coalitional games with noisy observations and dynamic environments is considered. The evolution of the excess is modeled by a stochastic differential inclusion involvin...
Robust linear quadratic mean-field games in crowd-seeking social networks.
We consider a social network where opinions evolve following a stochastic averaging process under the influence of adversarial disturbances. We provide a robust mean-field game model in the spirit of H∞-optimal control, establish existence of a mean-field equilibrium, and analyze its stochastic stability.
Opinion dynamics in social networks through mean field games
Emulation, mimicry, and herding behaviors are phenomena that are observed when multiple social groups interact. To study such phenomena, we consider in this paper a large population of homogeneous social networks. Each such network is characterized by a vector state, a vector-valued controlled input, and a vector-valued exogenous disturbance. The controlled input of each network aims to align its state to the mean distribution of other networks' states in spite of the actions of the disturbance. One of the contributions of this paper is a detailed analysis of the resulting mean-field game for the cases of both polytopic and $mathcal L_2$ bounds on controls and disturbances. A second contrib…
Robust Mean Field Games
Recently there has been renewed interest in large-scale games in several research disciplines, with diverse application domains as in the smart grid, cloud computing, financial markets, biochemical reaction networks, transportation science, and molecular biology. Prior works have provided rich mathematical foundations and equilibrium concepts but relatively little in terms of robustness in the presence of uncertainties. In this paper, we study mean field games with uncertainty in both states and payoffs. We consider a population of players with individual states driven by a standard Brownian motion and a disturbance term. The contribution is threefold: First, we establish a mean field syste…