0000000000224708

AUTHOR

Kirill Chernenko

Untangling the controversy on Ce3+luminescence in LaAlO3crystals

The work was supported by the Czech Science Foundation project no. 18-14789S and by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760). We acknowledge MAX IV Laboratory for time on Beamline FinEstBeAMS under Proposal 20180572. The research leading to this result was supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H…

research product

Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory

The main funding for the FinEstBeAMS beamline has been obtained from the European Union through the European Regional Development Fund (project “Estonian beamline to MAX-IV synchrotron”, granted to the University of Tartu) and from the Academy of Finland through the Finnish Research Infrastructure funding projects ( FIRI2010 , FIRI2013 , FIRI2014 ). The authors also acknowledge the funding contributions of the University of Oulu , University of Turku , Tampere University of Technology , the Estonian Research Council ( IUT 2-25 , IUT 2-26 , PRG-111 ), as well as the Estonian Centre of Excellence in Research “Advanced materials and high-technology devices for sustainable energetics, sensorics…

research product

Luminescence of ODC(II) in quartz and cristobalite glasses

Abstract The results of the optical spectroscopy of twofold coordinated silicon centers – ODC(II) in quartz and cristobalite glasses are presented. The luminescence and excitation spectra attributed to different local symmetry of ODC(II) were investigated under synchrotron excitation in the VUV region. The observed differences in the luminescence and excitation spectra of ODC(II) are caused by the environment and, therefore, short-range order in the samples.

research product

Luminescence and vacuum ultraviolet excitation spectroscopy of cerium doped Gd3Ga3Al2O12 single crystalline scintillators under synchrotron radiation excitations

Authors gratefully acknowledge the financial support from the Latvian Science Council grant LZP-2018/2-0358 . The research leading to this result has been supported by the project CALIPSO plus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON2020 . The work of A.P.K. was supported by the Ministry of Science and Higher Education of the Russian Federation , state contracts No. 11.6181.2017/ITR .

research product

Luminescence of divalent lanthanide doped BaBrI single crystal under synchrotron radiation excitations

Abstract Luminescence excitation spectra of BaBrI single crystals doped by divalent lanthanide ions are studied using synchrotron radiation excitations from the MAX IV 1.5 GeV storage ring. The energy of the edge and the formation of core cation exciton as well as the energy threshold of the multiplications of electronic excitations is found. It was clearly established the energy transfer from intrinsic luminescence centers to Sm2+ and Eu2+ ions.

research product

Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics

The authors acknowledge the expert help of the staff of MAX IV Laboratory. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. I.V. acknowledges the support of Russian Foundation for Basic Research # 20-52-S52001.

research product

Defect-related photoluminescence and photoluminescence excitation as a method to study the excitonic bandgap of AlN epitaxial layers: Experimental and ab initio analysis

We report defect-related photoluminescence (PL) and its vacuum ultraviolet photoluminescence excitation (PLE) spectra of aluminum nitride layers with various layer thicknesses and dislocation densities grown on two different substrates: sapphire and silicon. The defect-related transitions have been distinguished and examined in the emission and excitation spectra investigated under synchrotron radiation. The broad PL bands of two defect levels in the AlN were detected at around 3 eV and 4 eV. In the PLE spectra of these bands, a sharp excitonic peak originating most probably from the A-exciton of AlN was clearly visible. Taking into account the exciton binding energy, the measurements allow…

research product

Performance and characterization of the FinEstBeAMS beamline at the MAX IV Laboratory

European Regional Development Fund (grant No. TK-141 HiTechDevices 2014-2020.4.01.15-0011 to University of Tartu; grant No. MAX-TEENUS 2014-2020.4.01.20-0278 to University of Tartu; grant No. Eesti Kiirekanal SLOFY11156T/1 to University of Tartu); Estonian Research Council (grant No. PRG-629 to University of Tartu); Jane & Aatos Erkko Foundation (grant No. SOFUS); Business Finland (grant No. 1464/31/2019); Academy of Finland (grant No. 319042; grant No. 326461; grant No. 326406; grant No. 320165); University of Oulu; University of Turku; Tampere University; University of Tartu.

research product

Time-resolved luminescence and excitation spectroscopy of co-doped Gd3Ga3Al2O12 scintillating crystals

The work of Viktorija Pankratova was supported by the Latvian Science Council grant LZP-2018/2-0358. Vladimir Pankratov gratefully acknowledges the financial support from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (Grant No. К3-2018-021). The research leading to this result has also been supported by the project CALIPSO plus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESP…

research product