0000000000224734

AUTHOR

Aleixandre Verger

0000-0001-9374-1745

showing 9 related works from this author

A multisensor fusion approach to improve LAI time series

2011

International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …

010504 meteorology & atmospheric sciencesMeteorologytélédétectionsatellite0211 other engineering and technologiesSoil Scienceréseau neuronal02 engineering and technology01 natural sciencessuivi de culturesInstrumentation (computer programming)Computers in Earth SciencesLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingVegetationGeologyVegetationData fusionLAI time seriesSensor fusionMissing dataLAI time series;Vegetation;Modis;Temporal smoothing;Gap filling;Data fusionqualité des données13. Climate actionAutre (Sciences de l'ingénieur)Gap filling[SDE]Environmental SciencesEnvironmental scienceSatelliteModisTemporal smoothingScale (map)Smoothing
researchProduct

Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products

2008

International audience; This paper evaluates the performances of a neural network approach to estimate LAI from CYCLOPES and MODIS nadir normalized reflectance and LAI products. A data base was generated from these products over the BELMANIP sites during the 2001-2003 period. Data were aggregated at 3 km x 3 km, resampled at 1/16 days temporal frequency and filtered to reject outliers. VEGETATION and MODIS reflectances show very consistent values in the red, near infrared and short wave infrared bands. Neural networks were trained over part of this data base for each of the 6 MODIS biome classes to retrieve both MODIS and CYCLOPES LAI products. Results show very good performances of neural …

[SPI.OTHER]Engineering Sciences [physics]/OtherMean squared errorBiome0211 other engineering and technologiesSoil Science02 engineering and technologyNEURAL NETWORKSStandard deviationALBEDONadirComputers in Earth SciencesLeaf area indexLEA021101 geological & geomatics engineeringRemote sensingMathematicsCYCLOPESGeology04 agricultural and veterinary sciencesVegetation15. Life on landCONSISTENCY OF PRODUCTSRESEAU DE NEURONESMODISTemporal resolutionOutlier040103 agronomy & agriculture0401 agriculture forestry and fisheriesVEGETATIONLEAF AREA INDEX
researchProduct

Direct validation of FVC, LAI and FAPAR VEGETATION/SPOT derived products using LSA SAF methodology

2007

The aim of this work is to perform a direct validation of fraction of vegetation cover (FVC), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) resulting products from applying the LSA SAF methodology to VEGETATION BRDF data. LSA SAF adapted algorithms were tested in adequate test sites comprising different continental biomes covering a wide range of FVC, LAI and FAPAR values. Results seem to indicate the competitiveness of LSA SAF proposed methodology to retrieve remotely sensed biophysical parameters. A noticeable good agreement regarding the ground measurements was found. The overall accuracy (RAISE) is around 20% for FVC and FAPAR and around 15% …

FEV1/FVC ratioPhotosynthetically active radiationBiomeEnvironmental scienceEnhanced vegetation indexVegetationBidirectional reflectance distribution functionLeaf area indexVegetation coverRemote sensing2007 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Empirical and physical estimation of Canopy Water Content from CHRIS/PROBA data

2013

20 páginas, 4 tablas, 7 figuras.

010504 meteorology & atmospheric sciencesMean squared errorScience0211 other engineering and technologies02 engineering and technologyCHRIS/PROBA01 natural sciencescanopy water content;model inversion;neural networks;look up tables;empirical up-scalingmodel inversionEmpirical up-scalingAtmospheric radiative transfer codeslook up tablesRadiative transferModel inversion021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingArtificial neural networkCanopy water contentQHyperspectral imagingInversion (meteorology)Sigmoid functionSpectral bandsempirical up-scaling15. Life on landneural networks[SDE]Environmental SciencesGeneral Earth and Planetary SciencesLook up tablescanopy water contentNeural networkscanopy water content; model inversion; neural networks; look up tables; empirical up-scaling; CHRIS/PROBA
researchProduct

Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area

2009

The fraction of vegetation cover (FVC) and the leaf area index (LAI) are important parameters for many agronomic, ecological and meteorological applications. Several in-situ and remote sensing techniques for estimating FVC and LAI have been developed in recent years. In this paper, the uncertainty of in-situ FVC and LAI measurements was evaluated by comparing estimates from LAI-2000 and digital hemispherical photography (DHP). The accuracy achieved with a spectral mixture analysis algorithm and two vegetation indices-based methods was assessed using atmospherically corrected Landsat Thematic Mapper (TM) data over the Barrax cropland area where the European Space Agency (ESA) SENtinel-2 and …

FEV1/FVC ratioMean squared errorHemispherical photographyThematic MapperGeneral Earth and Planetary SciencesEnvironmental sciencePlant coverSatellite imageryVegetationLeaf area indexRemote sensingInternational Journal of Remote Sensing
researchProduct

Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …

2011

International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…

010504 meteorology & atmospheric sciencesComputer scienceGaussian0211 other engineering and technologiesSoil ScienceCANOPY BIOPHYSICAL CHARACTERISTICS02 engineering and technologyNEURAL NETWORK01 natural sciencesTransfer functionsymbols.namesakeAtmospheric radiative transfer codesRadiative transferRange (statistics)Sensitivity (control systems)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingArtificial neural networkGeologySigmoid functionRELATION SOL-PLANTE-ATMOSPHEREMODEL INVERSION[SDE]Environmental SciencessymbolsINDICE FOLIAIRE
researchProduct

Intercomparison and quality assessment of MERIS, MODIS and SEVIRI FAPAR products over the Iberian Peninsula

2013

Abstract The fraction of absorbed photosynthetically active radiation (FAPAR) is a key variable in productivity and carbon cycle models. The variety of available FAPAR satellite products from different space agencies leads to the necessity of assessing the existing differences between them before using into models. Discrepancies of four FAPAR products derived from MODIS, SEVIRI and MERIS (TOAVEG and MGVI algorithms), covering the Iberian Peninsula from July 2006 to June 2007 are here analyzed. The assessment is based on an intercomparison involving the spatial and temporal consistency between products and a statistical analysis across land cover types. In general, significant differences ar…

Global and Planetary Changegeography.geographical_feature_category010504 meteorology & atmospheric sciencesQuality assessment0211 other engineering and technologiesPrimary production02 engineering and technologyLand cover15. Life on landManagement Monitoring Policy and Law01 natural sciencesTemporal consistencyGeographyPhotosynthetically active radiationPeninsulaClimatologyAbsolute biasSatelliteComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

Quantification of LAI interannual anomalies by adjusting climatological patterns

2011

International audience; Scaling variations and shifts in the timing of seasonal phenology are central features of global change research. In this study, we propose a novel climatology fitting approach to quantify inter-annual anomalies in LAI seasonality. A consistent archive of daily LAI estimates was first derived from historical AVHRR satellite data for the 1981-2000 period over a globally representative sample of sites. The climatology values were then computed by averaging multi-year LAI profiles, gap filling and smoothing to eliminate possible high temporal frequency residual artifacts. The inter-annual variations in LAI were finally quantified by scaling and shifting the seasonal cli…

AVHRR010504 meteorology & atmospheric sciencesPhenology0211 other engineering and technologiesGlobal change02 engineering and technologyAtmospheric modelVegetationclimatology fittingSeasonalityResidualmedicine.disease01 natural sciencesLAIClimatology[SDE]Environmental SciencesmedicineEnvironmental scienceIndex Terms— inter-annual anomaliesTime seriesSmoothing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Prototyping of Land-SAF leaf area index algorithm with VEGETATION and MODIS data over Europe

2009

Abstract The Satellite Application Facility on Land Surface Analysis (Land-SAF) aims to provide land surface variables for the meteorological and environmental science communities from EUMETSAT satellites. This study assesses the performance of a simplified (i.e. random distribution of vegetation is assumed) version of the Land-SAF algorithm for the estimation of Leaf Area Index (LAI) when prototyped with VEGETATION (processed in CYCLOPES program) and MODIS reflectances. The prototype estimates of LAI are evaluated both by comparison with validated CYCLOPES and MODIS LAI products derived from the same sensors and directly through comparison with ground-based estimates. Emphasis is given on …

CanopyMean squared errorBiomeSoil ScienceGeologyVegetationEnvironmental scienceSpatial variabilitySatelliteSatellite imageryComputers in Earth SciencesLeaf area indexAlgorithmRemote sensingRemote Sensing of Environment
researchProduct