0000000000225065

AUTHOR

Amal El Sayeh F. Abou El Ela

Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds--implications for pharmacokinetics of selected substrates.

Abstract The pharmacokinetics of antipsychotic drugs has become an integral part in understanding their pharmacodynamic activity and clinical effects. In addition to metabolism aspects, carrier-mediated transport, particularly secretion by ABC transporters, has been discussed as potentially relevant for this group of therapeutics. In this study, the psychoactive compounds perphenazine, flupentixol, domperidone, desmethyl clozapine, haloperidol, fluphenazine, fluvoxamine, olanzapine, levome-promazine, perazine, desmethyl perazine, clozapine, quetiapine and amisulpride were characterized in terms of P-glycoprotein (P-gp) affinity and transport. Experimental methods involved a radioligand disp…

research product

How Does the Benzamide Antipsychotic Amisulpride get into the Brain?—An In Vitro Approach Comparing Amisulpride with Clozapine

This study evaluated the disposition of the two atypical antipsychotics, amisulpride (AMS) and clozapine (CLZ), and its main metabolite N-desmethylclozapine (DCLZ), to their target structures in the central nervous system by applying an in vitro blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier based on monolayers of porcine brain microvessel endothelial cells (PMEC) or porcine choroid plexus epithelial cells (PCEC). Permeation studies through PMEC- and PCEC-monolayers were conducted for 60 min at drug concentrations of 1, 5, 10, and 30 muM applied to the donor compartment. PMEC were almost impermeable for AMS (permeation coefficient, P1 x 10(-7) cm/s) in the resorptive direct…

research product