Investigating Long-Range Dependence in E-Commerce Web Traffic
This paper addresses the problem of investigating long-range dependence (LRD) and self-similarity in Web traffic. Popular techniques for estimating the intensity of LRD via the Hurst parameter are presented. Using a set of traces of a popular e-commerce site, the presence and the nature of LRD in Web traffic is examined. Our results confirm the self-similar nature of traffic at a Web server input, however the resulting estimates of the Hurst parameter vary depending on the trace and the technique used.