0000000000225076
AUTHOR
E. Cosme Llópez
When are profinite many-sorted algebras retracts of ultraproducts of finite many-sorted algebras?
For a set of sorts $S$ and an $S$-sorted signature $\Sigma$ we prove that a profinite $\Sigma$-algebra, i.e., a projective limit of a projective system of finite $\Sigma$-algebras, is a retract of an ultraproduct of finite $\Sigma$-algebras if the family consisting of the finite $\Sigma$-algebras underlying the projective system is with constant support. In addition, we provide a categorial rendering of the above result. Specifically, after obtaining a category where the objects are the pairs formed by a nonempty upward directed preordered set and by an ultrafilter containing the filter of the final sections of it, we show that there exists a functor from the just mentioned category whose o…
Congruence-based proofs of the recognizability theorems for free many-sorted algebras
Abstract We generalize several recognizability theorems for free single-sorted algebras to free many-sorted algebras and provide, in a uniform way and without using either regular tree grammars or tree automata, purely algebraic proofs of them based on congruences.
A characterization of the n-ary many-sorted closure operators and a many-sorted Tarski irredundant basis theorem
A theorem of single-sorted algebra states that, for a closure space (A, J ) and a natural number n, the closure operator J on the set A is n-ary if and only if there exists a single-sorted signature Σ and a Σ-algebra A such that every operation of A is of an arity ≤ n and J = SgA, where SgA is the subalgebra generating operator on A determined by A. On the other hand, a theorem of Tarski asserts that if J is an n-ary closure operator on a set A with n ≥ 2, then, for every i, j ∈ IrB(A, J ), where IrB(A, J ) is the set of all natural numbers which have the property of being the cardinality of an irredundant basis (≡ minimal generating set) of A with respect to J , if i < j and {i + 1, . . . …