Modelling systemic price cojumps with Hawkes factor models
Instabilities in the price dynamics of a large number of financial assets are a clear sign of systemic events. By investigating a set of 20 high cap stocks traded at the Italian Stock Exchange, we find that there is a large number of high frequency cojumps. We show that the dynamics of these jumps is described neither by a multivariate Poisson nor by a multivariate Hawkes model. We introduce a Hawkes one factor model which is able to capture simultaneously the time clustering of jumps and the high synchronization of jumps across assets.
The adaptive nature of liquidity taking in limit order books
In financial markets, the order flow, defined as the process assuming value one for buy market orders and minus one for sell market orders, displays a very slowly decaying autocorrelation function. Since orders impact prices, reconciling the persistence of the order flow with market efficiency is a subtle issue. A possible solution is provided by asymmetric liquidity, which states that the impact of a buy or sell order is inversely related to the probability of its occurrence. We empirically find that when the order flow predictability increases in one direction, the liquidity in the opposite side decreases, but the probability that a trade moves the price decreases significantly. While the…
Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics
The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users' behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and dai…
Modelling Systemic Cojumps with Hawkes Factor Models
Instabilities in the price dynamics of a large number of financial assets are a clear sign of systemic events. By investigating a set of 20 high cap stocks traded at the Italian Stock Exchange, we find that there is a large number of high frequency cojumps. We show that the dynamics of these jumps is described neither by a multivariate Poisson nor by a multivariate Hawkes model. We introduce a Hawkes one factor model which is able to capture simultaneously the time clustering of jumps and the high synchronization of jumps across assets.