0000000000225237

AUTHOR

Nathalie M. Grob

0000-0003-1031-5105

showing 3 related works from this author

1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs.

2021

[Image: see text] 1,5-Disubstituted 1,2,3-triazoles (1,5-Tz) are considered bioisosteres of cis-amide bonds. However, their use for enhancing the pharmacological properties of peptides or proteins is not yet well established. Aiming to illustrate their utility, we chose the peptide conjugate [Nle(15)]MG11 (DOTA-dGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH(2)) as a model compound since it is known that the cholecystokinin-2 receptor (CCK2R) is able to accommodate turn conformations. Analogs of [Nle(15)]MG11 incorporating 1,5-Tz in the backbone were synthesized and radiolabeled with lutetium-177, and their pharmacological properties (cell internalization, receptor binding affinity and specificity, pla…

Biodistribution3-TriazolesStereochemistryPeptidomimeticmedia_common.quotation_subject1201 natural sciencesBiochemistryTurn (biochemistry)Drug Discovery[CHIM]Chemical SciencesPeptide bondInternalizationReceptorCancermedia_commonTumor Targeting[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryChemistry123-Triazoles; Peptidomimetics; Structure−activity relationships; Radiopharmaceuticals; Tumor targeting; CancerStructure-Activity RelationshipsOrganic ChemistryBiological activity0104 chemical sciences010404 medicinal & biomolecular chemistryYield (chemistry)PeptidomimeticsRadiopharmaceuticalsACS medicinal chemistry letters
researchProduct

Cover Feature: Single Peptide Backbone Surrogate Mutations to Regulate Angiotensin GPCR Subtype Selectivity (Chem. Eur. J. 47/2020)

2020

Peptide backboneChemistryStereochemistryFeature (computer vision)PeptidomimeticOrganic ChemistryRenin–angiotensin systemClick chemistrySubtype selectivityCover (algebra)General ChemistryCatalysisG protein-coupled receptorChemistry – A European Journal
researchProduct

Single Peptide Backbone Surrogate Mutations to Regulate Angiotensin GPCR Subtype Selectivity

2020

Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6-Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them a…

PeptidomimeticStereochemistryChemistry Multidisciplinary[SDV]Life Sciences [q-bio]G-protein-coupled receptorsPeptide[CHIM.THER]Chemical Sciences/Medicinal ChemistryLigandsClick chemistry; Competition-binding experiments; G-protein-coupled receptors; Neurotrophic effects; Peptidomimetics010402 general chemistry01 natural sciencesCatalysisSubstrate Specificityneurotrophic effectscompetition-binding experimentsAnimalsHumansPeptide bondAmino AcidsComputingMilieux_MISCELLANEOUSG protein-coupled receptorchemistry.chemical_classificationReceptors AngiotensinScience & TechnologyAngiotensin II receptor type 1010405 organic chemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryAngiotensin IIOrganic ChemistryGeneral ChemistryAngiotensin II0104 chemical sciencesAmino acidChemistryHEK293 CellschemistrypeptidomimeticsMutationPhysical Sciencesclick chemistryPeptides03 Chemical SciencesTwo-dimensional nuclear magnetic resonance spectroscopy
researchProduct