0000000000225494

AUTHOR

S.g. Kovalenko

New contributions to supersymmetric mechanism of neutrinoless double beta decay

The neutrinoless double beta ($\znbb$) decay is analyzed within the Minimal Supersymmetric Standard Model with explicit R-parity violation (\rp MSSM). We have found new supersymmetric contributions to this process and give the complete set of relevant Feynman diagrams. Operators describing $0^+ \longrightarrow 0^+$ nuclear transitions induced by the supersymmetric interactions of the \rp MSSM are derived. These operators can be used for calculating the $\znbb$ decay rate applying any specific nuclear model wave functions.

research product

R-parity-conserving supersymmetry, neutrino mass, and neutrinoless double beta decay

We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta ($\znbb$) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to $\znbb$ are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of $\znbb$-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the $\znbb$-decay half-life of $^{76}$Ge and the neutrino mass we obtain constraints on the (B-L)-…

research product

A general parametrization for the long-range part of neutrinoless double beta decay

Double beta decay has been proven to be a powerful tool to constrain $B-L$ violating physics beyond the standard model. We present a representation for the long-range part of the general $0\nu\beta\beta$ decay rate allowed by Lorentz-invariance. Combined with the short range part this general parametrization in terms of effective $B-L$ violating couplings will provide the $0\nu\beta\beta$ limits on arbitrary lepton number violating theories.

research product

Towards a superformula for neutrinoless double beta decay

A general Lorentz--invariant parameterization for the long-range part of the $0\nu\beta\beta$ decay rate is derived. Combined with the short range part this general parameterization in terms of effective $B-L$ violating couplings will allow it to extract the $0\nu\beta\beta$ limits on arbitrary lepton number violating theories. Several new nuclear matrix elements appear in the general formalism compared to the standard neutrino mass mechanism. Some of these new matrix elements have never been considered before and are calculated within pn-QRPA. Using these, limits on lepton number violating parameters are derived from experimental data on $^{76}$Ge.

research product

QCD running in neutrinoless double beta decay: Short-range mechanisms

16 pages.- 3 figures.- 2 tables

research product

On the SUSY Accompanied Neutrino Exchange Mechanism of Neutrinoless Double Beta Decay

The neutrinoless double beta decay ($\znbb$) induced by light Majorana neutrino exchange between decaying nucleons, accompanied by the squark exchange inside one nucleon, recently discussed by Babu and Mohapatra, is carefully analyzed both from the particle and nuclear physics sides. New nuclear matrix elements relevant to this mechanism are calculated. We extend the analysis to include mixing of light neutrinos with heavy and "sterile" neutrinos. It introduces another supersymmetric (SUSY) contribution to $\znbb$. We discuss constraints on the \rp MSSM parameters imposed by the current experimental limit on $\znbb$ decay half-life of $^{76}$Ge.

research product

On the observability of Majoron emitting double beta decays

Because of the fine--tuning problem in classical Majoron models in recent years several new models were invented. It is pointed out that double beta decays with Majoron emission depend on new matrix elements, which have not been considered in the literature. A calculation of these matrix elements and phase space integrals is presented. We find that for new Majoron models extremely small decay rates are expected.

research product

Supersymmetry and neutrinoless double beta decay.

Neutrinoless double beta decay ($\znbb$) induced by superparticle exchange is investigated. Such a supersymmetric (SUSY) mechanism of $\znbb$ decay arises within SUSY theories with R-parity non-conservation (\rp). We consider the minimal supersymmetric standard model (MSSM) with explicit \rp terms in the superpotential (\rp MSSM). The decay rate for the SUSY mechanism of $\znbb$ decay is calculated. Numerical values for nuclear matrix elements for the experimentally most interesting isotopes are calculated within pn-QRPA. Constraints on the \rp MSSM parameter space are extracted from current experimental half-life limits. The most stringent limits are derived from data on $^{76}$Ge. It is s…

research product

B-L-violating masses in softly broken supersymmetry

We prove a general low-energy theorem establishing a generic relation between the neutrino Majorana mass and the superpartner sneutrino B-L-violating "Majorana"-like mass term. The theorem states that, if one of these two quantities is non-zero the other one is also non-zero and, vice versa, if one of them vanishes the other vanishes, too. The theorem is a consequence of the underlying supersymmetry (SUSY) and valid for any realistic gauge model with weak scale softly broken SUSY.

research product