0000000000225514
AUTHOR
Carolina Vallejo
showing 5 related works from this author
McKay natural correspondences on characters
2014
Let [math] be a finite group, let [math] be an odd prime, and let [math] . If [math] , then there is a canonical correspondence between the irreducible complex characters of [math] of degree not divisible by [math] belonging to the principal block of [math] and the linear characters of [math] . As a consequence, we give a characterization of finite groups that possess a self-normalizing Sylow [math] -subgroup or a [math] -decomposable Sylow normalizer.
2-Brauer correspondent blocks with one simple module
2017
Abstract One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We study this situation for 2-blocks.
A reduction theorem for the Galois–McKay conjecture
2020
We introduce H {\mathcal {H}} -triples and a partial order relation on them, generalizing the theory of ordering character triples developed by Navarro and Späth. This generalization takes into account the action of Galois automorphisms on characters and, together with previous results of Ladisch and Turull, allows us to reduce the Galois–McKay conjecture to a question about simple groups.
Brauer correspondent blocks with one simple module
2019
One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We characterize this situation for the principal p-blocks where p is odd.