0000000000225514

AUTHOR

Carolina Vallejo

showing 5 related works from this author

McKay natural correspondences on characters

2014

Let [math] be a finite group, let [math] be an odd prime, and let [math] . If [math] , then there is a canonical correspondence between the irreducible complex characters of [math] of degree not divisible by [math] belonging to the principal block of [math] and the linear characters of [math] . As a consequence, we give a characterization of finite groups that possess a self-normalizing Sylow [math] -subgroup or a [math] -decomposable Sylow normalizer.

Discrete mathematicsFinite groupAlgebra and Number TheoryDegree (graph theory)self-normalizing Sylow subgroup20C15Sylow theoremsBlock (permutation group theory)Characterization (mathematics)Centralizer and normalizerPrime (order theory)$p$-decomposable Sylow normalizerCombinatoricsMathematics::Group TheoryMcKay conjecture20C20MathematicsAlgebra & Number Theory
researchProduct

2-Brauer correspondent blocks with one simple module

2017

Abstract One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We study this situation for 2-blocks.

AlgebraAlgebra and Number Theory010102 general mathematics0103 physical sciencesCharacter theoryBlock theoryKey (cryptography)010307 mathematical physics0101 mathematics01 natural sciencesRepresentation theorySimple moduleMathematicsJournal of Algebra
researchProduct

A reduction theorem for the Galois–McKay conjecture

2020

We introduce H {\mathcal {H}} -triples and a partial order relation on them, generalizing the theory of ordering character triples developed by Navarro and Späth. This generalization takes into account the action of Galois automorphisms on characters and, together with previous results of Ladisch and Turull, allows us to reduce the Galois–McKay conjecture to a question about simple groups.

Pure mathematicsReduction (recursion theory)ConjectureCharacter (mathematics)Applied MathematicsGeneral MathematicsSimple group010102 general mathematics0101 mathematicsAutomorphism01 natural sciencesAction (physics)MathematicsTransactions of the American Mathematical Society
researchProduct

Brauer correspondent blocks with one simple module

2019

One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We characterize this situation for the principal p-blocks where p is odd.

20C20 20C15MatemáticasApplied MathematicsGeneral Mathematics010102 general mathematicsPrincipal (computer security)MathematicsofComputing_GENERAL01 natural sciencesRepresentation theoryAlgebra0103 physical sciencesKey (cryptography)FOS: Mathematics010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Simple moduleMathematics - Representation TheoryMathematics
researchProduct

Characters and generation of Sylow 2-subgroups

2021

Pure mathematicsMathematics (miscellaneous)Character tableSylow theoremsMathematicsRepresentation Theory of the American Mathematical Society
researchProduct