0000000000225600

AUTHOR

A. V. Nesterenko

showing 3 related works from this author

The QCD analytic effective charge and its dependence on the pion mass

2004

A new model for the QCD analytic running coupling, which incorporates the effects due to the $\pi$ meson mass, is proposed. The properties of this invariant charge in spacelike and timelike regions are examined. Its main distinctive features are a finite infrared limiting value, which depends on the pion mass, and the "plateau-like" behavior in the deep infrared domain of the timelike region.

High Energy Physics - TheoryPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMesonInfraredHigh Energy Physics::LatticeFísicaFOS: Physical sciencesAstronomy and AstrophysicsLimitingInvariant (physics)Atomic and Molecular Physics and OpticsEffective nuclear chargeHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyPionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Dispersion relationHigh Energy Physics::ExperimentMathematics::Differential Geometry
researchProduct

The anomalous magnetic moment of the muon in the Standard Model

2020

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

Standard ModelNuclear Theorymagnetichigher-orderPhysics beyond the Standard ModelGeneral Physics and Astronomynucl-ex01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Subatomic Physicsquantum electrodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Vacuum polarizationNuclear Experiment (nucl-ex)Nuclear Experimentfundamental constant: fine structurePhysicsQuantum chromodynamicsQEDAnomalous magnetic dipole momentnew physicsJ-PARC LabHigh Energy Physics - Lattice (hep-lat)Electroweak interactionlattice field theoryParticle Physics - Latticehep-phObservableHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticle Physics - ExperimentParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-th530 Physicsdispersion relationg-2Lattice field theoryFOS: Physical scienceshep-latnonperturbative[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530Muon magnetic momentNuclear Theory (nucl-th)High Energy Physics - Latticemuonquantum chromodynamics0103 physical sciencesddc:530Nuclear Physics - Experiment010306 general physicsactivity reportperturbation theoryParticle Physics - PhenomenologyMuonmuon: magnetic momentelectroweak interaction[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hep-ex010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringanomalous magnetic moment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentPhysics Reports
researchProduct

The strong coupling constant: State of the art and the decade ahead

2022

This document provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling $\alpha_s$. The current status of the seven methods presently used to determine $\alpha_s$ based on: (i) lattice QCD, (ii) hadronic $\tau$ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) e+e-, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses, are reviewed. Novel $\alpha_s$ determinations are discussed, as well as the averaging method used to obtain the PDG world-average value at the reference Z boson mass scale, $\…

p p: scatteringFOS: Physical scienceshep-latparton: distribution functionZ0: massHigh Energy Physics - Experimentmass [Z0]hadronic [final state]electron p: scatteringHigh Energy Physics - Experiment (hep-ex)mass: scaleHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)strong interaction: coupling constantscale [mass]deep inelastic scatteringstrong coupling[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]quarkonium: decayParticle Physics - Phenomenologyelectroweak interaction[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hep-exHigh Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologylattice field theoryParticle Physics - Latticehep-phscattering [electron p]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]final state: hadronicHigh Energy Physics::Experimentdecay [quarkonium]distribution function [parton]coupling constant [strong interaction]Particle Physics - Experiment
researchProduct