Solid-state mechanochemical synthesis of multinary metal halide semiconductors for optoelectronics: From powder to thin film
En la última década, las perovskitas de haluro de plomo, así como otros haluros de metales múltiples, incluidas las alternativas sin plomo, han demostrado ser materiales prometedores para su uso en optoelectrónica. Por lo tanto, se buscan activamente nuevas formas de producir semiconductores de alta pureza a gran escala. Por tanto, el objetivo principal de esta tesis doctoral es el desarrollo de perovskitas y semiconductores relacionados utilizando métodos sin disolventes. Además, con la perspectiva del uso de dichos materiales en optoelectrónica a escala industrial, el foco está puesto en trabajar con materiales benignos para el desarrollo de alternativas a las perovskitas tóxicas. La sínt…
Making by Grinding: Mechanochemistry Boosts the Development of Halide Perovskites and Other Multinary Metal Halides
Mechanochemical synthesis has recently emerged as a promising route for the synthesis of functional lead halide perovskites as well as other (lead‐free) metal halides. Mechanochemical synthesis presents several advantages with regards to more commonly used solution‐based processes such as an inherent lower toxicity by avoiding organic solvents and a finer control over stoichiometry of the final products. The ease of implementation, either through the use of a simple mortar and pestle or with an electrically powered ball‐mill, and low amount of side products make mechanochemical synthesis appealing for upscaling the production of halide perovskites. Due to the defect tolerance of lead halide…
Tunable Wide‐Bandgap Monohalide Perovskites
Herein the mechanochemical synthesis of inorganic as well as hybrid organic-inorganic monohalide perovskites with tunable bandgaps is reported. It is shown that the bandgap bowing known for iodide mixed Sn-Pb perovskites is also present in the pure bromide analogous. This results in technologically very interesting materials with bandgaps in the range of 1.7-1.9 eV. Similar bandgap perovskites are typically achieved by mixing two halides that are prone to segregate over time. This limits the achievable open circuit voltage. For monohalide perovskites this problem is eliminated, making these materials especially promising wide bandgap absorbers for tandem solar cells. Perovskite Thin-film Ph…
Perovskites and Beyond: Dry Mechanochemical Synthesis of Multinary Metal Halides
Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical and Electrical Properties
Phase‐pure CsSnI3, FASnI3, Cs(PbSn)I3, FA(PbSn)I3 perovskites (FA = formamidinium = HC(NH2)2+) as well as the analogous so‐called vacancy‐ordered double perovskites Cs2SnI6 and FA2SnI6 are mechanochemically synthesized. The addition of SnF2 is found to be crucial for the synthesis of Cs‐containing perovskites but unnecessary for hybrid ones. All compounds show an absorption onset in the near‐infrared (NIR) region, which makes them especially relevant for photovoltaic applications. The addition of Pb(II) and SnF2 is crucial to improve the electronic properties in 3D Sn(II)‐based perovskites, in particular their charge carriers mobility (≈0.2 cm2 Vs−1) which is enhanced upon reduction of the …
Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence
Dry mechanochemical ball-milling of halide precursor salts is a promising route for the synthesis of high-purity halide perovskites in a fast and solvent-free manner. However, there is a lack of information on the process mechanisms, kinetics, and possible side-effects. Here, we investigated in detail the mechanochemical synthesis of fully-inorganic CsPbBr3 by ball-milling of stoichiometric CsBr and PbBr2. Detailed structural, morphological and optical analyses reveal several beneficial and detrimental effects of milling as a function of time. Three stages are identified during the process: (i) at short milling times (t < 5 min) different ternary compounds are formed, including stoichiometr…
Incorporation of potassium halides in the mechanosynthesis of inorganic perovskites: feasibility and limitations of ion-replacement and trap passivation
Potassium halides (KX; X = I, Br, or Cl) were incorporated as partial replacements of CsBr in the mechanosynthesis of CsPbBr3. This led to partial substitution of both monovalent ions forming mixed Cs1−xKxPbBr3−yXy perovskites. Longer photoluminescence lifetimes were also observed, possibly linked to the formation of a non-perovskite KPb2X5 passivating layer.
Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites
Fully inorganic cesium lead halide perovskite thin films were prepared by an easy, fast and dry process based on single-source vacuum deposition. We investigated the structural and optical characteristics of the so-formed films as a function of chemical composition (chloride, bromide and iodide films were formed), post-deposition thermal annealing, as well as previous mechanosynthesis of perovskite powders. We found out that the CsPbX3 perovskite was preferentially formed for the smaller halides and favored by previous ball-milling of CsX and PbX2 precursors. When bigger halides were used and/or CsX and PbX2 precursors were simply mixed without previous mechanosynthesis, PbX2-rich compounds…
Low-dimensional non-toxic A 3 Bi 2 X 9 compounds synthesized by a dry mechanochemical route with tunable visible photoluminescence at room temperature
We have synthesized fifteen inorganic and hybrid organic-inorganic non-toxic A3Bi2X9 compounds (A = K+, Rb+, Cs+, CH3NH3+ and HC(NH2)2+; X = I−, Br−, Cl−) through dry mechanochemistry. We demonstrate that this synthetic method is very well suited to prepare compounds from poorly soluble precursors, allowing thus the preparation of so far unreported compounds. X-ray diffraction analysis demonstrates the high crystallinity of the so-formed ternary bismuth halides. Furthermore, we show that, through substitution of the A-cation and X-anion, the bandgap of these compounds can be tuned to absorb throughout the whole visible spectrum. As-prepared powders of Cs3Bi2Br9 and Cs3Bi2I9 without any pass…