0000000000225753

AUTHOR

David Degras

showing 2 related works from this author

Confidence bands for Horvitz-Thompson estimators using sampled noisy functional data

2013

When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function. Assuming functional data are collected from a finite population according to a probabilistic sampling scheme, with the measurements being discrete in time and noisy, we propose to first smooth the sampled trajectories with local polynomials and then estimate the mean function with a Horvitz-Thompson estimator. Under mild conditions on the population size, observation times, regularity of the trajectories, sampling scheme, and smoothing bandwidth, we prove a Central Limit theorem in the space of …

Statistics and ProbabilityFOS: Computer and information sciencesmaximal inequalitiesCovariance functionCLTPopulationSurvey samplingweighted cross-validationMathematics - Statistics TheoryStatistics Theory (math.ST)Methodology (stat.ME)symbols.namesakeFOS: Mathematicssurvey samplingeducationGaussian processfunctional dataStatistics - Methodologysuprema of Gaussian processesMathematicsCentral limit theoremeducation.field_of_studySampling (statistics)Estimatorspace of continuous functionssymbolslocal polynomial smoothingAlgorithmSmoothing
researchProduct

Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?

2017

Summary Principal component analysis (PCA) is a method of choice for dimension reduction. In the current context of data explosion, online techniques that do not require storing all data in memory are indispensable to perform the PCA of streaming data and/or massive data. Despite the wide availability of recursive algorithms that can efficiently update the PCA when new data are observed, the literature offers little guidance on how to select a suitable algorithm for a given application. This paper reviews the main approaches to online PCA, namely, perturbation techniques, incremental methods and stochastic optimisation, and compares the most widely employed techniques in terms statistical a…

Statistics and ProbabilityComputer scienceComputationDimensionality reductionIncremental methods02 engineering and technologyMissing data01 natural sciences010104 statistics & probabilityData explosionStreaming dataPrincipal component analysis0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsStatistics Probability and UncertaintyAlgorithmEigendecomposition of a matrixInternational Statistical Review
researchProduct