Scattering and absorption imaging of a highly fractured fluid-filled seismogenetic volume in a region of slow deformation
Regions of slow strain often produce swarm-like sequences, characterized by the lack of a clear mainshock-aftershock pattern. The comprehension of their underlying physical mechanisms is challenging and still debated. We used seismic recordings from the last Pollino swarm (2010–2014) and nearby to separate and map seismic scattering (from P peak-delays) and absorption (from late-time coda-wave attenuation) at different frequencies in the Pollino range and surroundings. High-scattering and high-absorption anomalies are markers of a fluid-filled fracture volume extending from SE to NW (1.5–6 Hz) across the range. With increasing frequency, these anomalies approximately cover the area where t…
Integration of onshore and offshore seismic arrays to study the seismicity of the Calabrian Region: a two steps automatic procedure for the identification of the best stations geometry
Abstract. We plan to deploy in the Taranto Gulf some Ocean Bottom broadband Seismometer with Hydrophones. Our aim is to investigate the offshore seismicity of the Sibari Gulf. The seismographic network optimization consists in the identification of the optimal sites for the installation of the offshore stations, which is a crucial factor for the success of the monitoring campaign. In this paper, we propose a two steps automatic procedure for the identification of the best stations geometry. In the first step, based on the application of a set of a priori criteria, the suitable sites to host the ocean bottom seismic stations are identified. In the second step, the network improvement is eval…
Crustal Structure of the Seismogenic Volume of the 2010–2014 Pollino (Italy) Seismic Sequence From 3D P- and S-Wave Tomographic Images
A tomographic analysis of Mt. Pollino area (Italy) has been performed using earthquakes recorded in the area during an intense seismic sequence that occurred between 2010 and 2014. 870 local earthquakes with magnitude ranging from 1.8 to 5.0 were selected considering the number of recording stations, the signal quality, and the hypocenter distribution. P- and S-wave arrival times were manually picked and used to compute 3D velocity models through tomographic seismic inversion. The resulting 3D distributions of VP and VS are characterized by high resolution in the central part of the investigated area and from surface to about 10 km below sea level. The aim of the work is to obtain high-qual…