Momentum partition between constituents of exotic atoms during laser-induced tunneling ionization
The tunneling ionization of exotic atoms such as muonic hydrogen, muonium, and positronium in a strong laser field of circular polarization is investigated, taking into account the impact of the motion of the center of mass on the the tunneling ionization dynamics. The momentum partition between the ionization products is deduced. The effect of the center-of-mass motion for the momentum distribution of the ionization components is determined. The effect scales with the ratio of the electron (muon) to the atomic core masses and is nonnegligible for exotic atoms, while being insignificant for common atoms. It is shown that the electron (muon) momentum shift during the under-the-barrier motion…