Comparison results for a linear elliptic equation with mixed boundary conditions
In this paper we study a linear elliptic equation having mixed boundary conditions, defined in a connected open set $\Omega $ of $\mathbb{R}^{n}$. We prove a comparison result with a suitable ``symmetrized'' Dirichlet problem which cannot be uniformly elliptic depending on the regularity of $ \partial \Omega $. Regularity results for non-uniformly elliptic equations are also given.