0000000000225892
AUTHOR
P. Cunningham
Dynamic integration with random forests
Random Forests (RF) are a successful ensemble prediction technique that uses majority voting or averaging as a combination function. However, it is clear that each tree in a random forest may have a different contribution in processing a certain instance. In this paper, we demonstrate that the prediction performance of RF may still be improved in some domains by replacing the combination function with dynamic integration, which is based on local performance estimates. Our experiments also demonstrate that the RF Intrinsic Similarity is better than the commonly used Heterogeneous Euclidean/Overlap Metric in finding a neighbourhood for local estimates in the context of dynamic integration of …
Diversity in random subspacing ensembles
Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. It was shown experimentally and theoretically that in order for an ensemble to be effective, it should consist of classifiers having diversity in their predictions. A number of ways are known to quantify diversity in ensembles, but little research has been done about their appropriateness. In this paper, we compare eight measures of the ensemble diversity with regard to their correlation with the accuracy improvement due to ensembles. We conduct experiments on 21 data sets from the UCI machine learning repository, comparing the correlations for random subspacing ensembles with diffe…