0000000000226020

AUTHOR

Javier I. González

showing 1 related works from this author

Concept Drift Detection Using Online Histogram-Based Bayesian Classifiers

2016

In this paper, we present a novel algorithm that performs online histogram-based classification, i.e., specifically designed for the case when the data is dynamic and its distribution is non-stationary. Our method, called the Online Histogram-based Naïve Bayes Classifier (OHNBC) involves a statistical classifier based on the well-established Bayesian theory, but which makes some assumptions with respect to the independence of the attributes. Moreover, this classifier generates a prediction model using uni-dimensional histograms, whose segments or buckets are fixed in terms of their cardinalities but dynamic in terms of their widths. Additionally, our algorithm invokes the principles of info…

Concept driftComputer sciencebusiness.industryBayesian probabilityPattern recognition02 engineering and technologycomputer.software_genreInformation theoryNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITION020204 information systemsHistogram0202 electrical engineering electronic engineering information engineeringsort020201 artificial intelligence & image processingData miningArtificial intelligencebusinesscomputerClassifier (UML)Statistical classifier
researchProduct