0000000000226026
AUTHOR
Bernd Voss
A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR
The GEM-TPC [1] described herein will be part of the standard beam-diagnostics equipment of the Super-FRS [2] . This chamber will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate, spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z=1 up to Z=92. The current prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields in opposite directions. The twin configuration is done by flipping one of the GEM-TPCs o…
Implementation of theP¯ANDA Planar-GEM tracking detector in Monte Carlo simulations
Abstract The P ¯ ANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P ¯ ANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the exp…
Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0
The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…
Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI
Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…
Performance studies of the P¯ANDA planar GEM-tracking detector in physics simulations
Abstract The P ¯ ANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P ¯ ANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P ¯ ANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-trac…
Development of a New Clusterization Method for the GEM-TPC Detector
The Facility for Antiproton and Ion Research FAIR, in Darmstadt Germany, will be one of the largest accelerator laboratories worldwide. The Superconducting FRagment Separator (Super-FRS)* is one of its main components. The Super-FRS can produce, separate and deliver high-energy radioactive beams with intensities up to 1e11 ions/s, covering projectiles from protons up to uranium and it can be used as an independent experimental device. The Gas Electron Multiplier-based Time Projection Chambers (GEM-TPC) in twin configuration is a newly developed beam tracking detector capable of providing spatial resolution of less than 1 mm with a tracking efficiency close to 100% at 1 MHz counting rate. Th…
Experiments on Fission Dynamics with Relativistic Heavy-ion Beams
[Abstract] At GSI, Darmstadt, an experimental program on fission with relativistic heavy-ion beams is in progress. A large range of excitation energies, combined with low angular momentum and small shape distortion is accessible. Full nuclide identification of the reaction residues is achieved by applying inverse kinematics. The nuclide production and the kinematics of fission fragments from a variety of primordial and radioactive projectiles reveal new insight into the influence of shell effects and dissipation on the fission process. The present contribution gives an overview on the experimental methods, the experimental results and the prospects for future progress.
Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI
Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…