0000000000226181

AUTHOR

Wojciech Roga

Entropic trade-off relations for quantum operations

Spectral properties of an arbitrary matrix can be characterized by the entropy of its rescaled singular values. Any quantum operation can be described by the associated dynamical matrix or by the corresponding superoperator. The entropy of the dynamical matrix describes the degree of decoherence introduced by the map, while the entropy of the superoperator characterizes the a priori knowledge of the receiver of the outcome of a quantum channel Phi. We prove that for any map acting on a N--dimensional quantum system the sum of both entropies is not smaller than ln N. For any bistochastic map this lower bound reads 2 ln N. We investigate also the corresponding R\'enyi entropies, providing an …

research product

Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations

We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. Thes…

research product

Universal freezing of quantum correlations within the geometric approach

Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first …

research product

Device-independent quantum reading and noise-assisted quantum transmitters

In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by enhanced state distinguishability. Here we show that the enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield a higher quantum efficiency compared to coherent thermal quan…

research product

Non-Markovianity of Gaussian Channels

We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated to arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

research product

Quantifying nonclassicality: global impact of local unitary evolutions

We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize t…

research product

Discord of response

The presence of quantum correlations in a quantum state is related to the state response to local unitary perturbations. Such response is quantified by the distance between the unperturbed and perturbed states, minimized with respect to suitably identified sets of local unitary operations. In order to be a bona fide measure of quantum correlations, the distance function must be chosen among those that are contractive under completely positive and trace preserving maps. The most relevant instances of such physically well behaved metrics include the trace, the Bures, and the Hellinger distance. To each of these metrics one can associate the corresponding discord of response, namely the trace,…

research product