0000000000226197

AUTHOR

Jonas Vogel

Precision measurement of the ionization energy of a single trapped $^{40}$Ca$^+$ ion by Rydberg series excitation

A complete set of spectroscopic data is indispensable when using Rydberg states of trapped ions for quantum information processing. We carried out Rydberg series spectroscopy for $nS_{1/2}$ states with $38 \leq n \leq 65$ and for $nD_{5/2}$ states with $37\leq n \leq 50$ on a single trapped $^{40}$Ca$^+$ ion. From a nonlinear regression to resonance frequencies, we determined the ionization energy of 2 870 575.582(15) GHz, measured 60 times more accurately as compared to the accepted value and contradicting it by 7.5 standard deviations. We confirm quantum defect values of $\delta_{S_{1/2}}=1.802995(5)$ and $\delta_{D_{5/2}}=0.626888(9)$ for $nS_{1/2}$ and $nD_{5/2}$ states respectively, wh…

research product

Rydberg Series Excitation of a Single Trapped Ca+40 Ion for Precision Measurements and Principal Quantum Number Scalings

A complete set of spectroscopic data is indispensable when using Rydberg states of trapped ions for quantum information processing. We carried out Rydberg series spectroscopy for $n{S}_{1/2}$ states with $38\ensuremath{\le}n\ensuremath{\le}65$ and for $n{D}_{5/2}$ states with $37\ensuremath{\le}n\ensuremath{\le}50$ on a single trapped $^{40}{\mathrm{Ca}}^{+}$ ion. We determined the ionization energy of 2 870 575.582(15) GHz, 60 times more accurately as compared to the accepted value and contradicting it by 7.5 standard deviations. We confirm quantum defect values of ${\ensuremath{\delta}}_{{S}_{1/2}}=1.802\text{ }995(5)$ and ${\ensuremath{\delta}}_{{D}_{5/2}}=0.626\text{ }888(9)$ for $n{S}_…

research product

Determination of quantum defect for the Rydberg P series of Ca II

We present an experimental investigation of the Rydberg 23 P$_{1/2}$ state of laser-cooled $^{40}$Ca$^+$ ions in a radiofrequency ion trap. Using micromotion sideband spectroscopy on a narrow quadrupole transition, the oscillating electric field at the ion position was precisely characterised, and the modulation of the Rydberg transition due to this field was minimised. From a correlated fit to this P line and previously measured P and F level energies of Ca II, we have determined the ionization energy of 95 751.916(32) $\rm {cm}^{-1}$, in agreement with the accepted value, and the quantum defect for the $n$ P$_{1/2}$ states.

research product

Shuttling of Rydberg ions for fast entangling operations

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that establishes common modes of motion. After laser-initialization of ions to a superposition of ground- and Rydberg-state, the entanglement operation is driven purely by applying a voltage pulse that shuttles the ion crystal back and forth. This operation can achieve entanglement on a sub-$\mu$s timescale, more than two orders of magnitude faster than typical gate operations driven by continuous-wave lasers. Our analysis shows that the fidelity achieved with this protocol can exceed $99.9\%$ with…

research product