0000000000228104

AUTHOR

Licia Pantano

A3 adenosine receptor: Homology modeling and 3D-QSAR studies

Adenosine receptors (AR) belong to the superfamily of G-protein-coupled receptors (GPCRs). They are divided into four subtypes (A1, A2A, A2B, and A3) [1], and can be distinguished on the basis of their distinct molecular structures, distinct tissues distribution, and selectivity for adenosine analogs [2,3]. The hA3R, the most recently identified adenosine receptor, is involved in a variety of intracellular signaling pathways and physiological functions [4]. Expression of A3R was reported to be elevated in cancerous tissues [5], and A3 antagonists have been proposed for therapeutic treatments of cancer. The recent literature availability of crystal structure of hA2A adenosine receptor (PDB c…

research product

Studi di dinamica molecolare su Mdm2 legata a due differenti inibitori

research product

TECNICHE DI MODELLISTICA MOLECOLARE NELLA PROGETTAZIONE DI INIBITORI DELL'ATTIVITÀ TRASCRIZIONALE DI HIF-1

research product

THE DISCOVERY OF NEW HIF-1 INHIBITORS THROUGH MOLECULAR MODELING STUDIES

research product

Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by small molecules.

The mdm2 oncogene product, MDM2, is an ubiquitin protein ligase that inhibits the transcriptional activity of the tumor suppressor p53 and promotes its degradation. About 50% of all human cancers present mutations or deletions in the TP53 gene. In the remaining half of all human neoplasias that express the wild-type protein, aberrations of p53 regula- tors, such as MDM2, account for p53 inhibition. For this reason, designing small-molecule inhibitors of the p53-MDM2 protein-protein interaction is a promising strategy for the treatment of cancers retaining wild-type p53. The development of inhibitors has been challenging. Although many small-molecule MDM2 inhibitors have shown potent in vitr…

research product

Molecular Modelling on Leptin and the Ob Receptor as anti-obesity target

Obesity is a chronic pathology with multi-factorial aetiology, characterized by extreme body weight due to storing of fat in the adipose tissue, caused by an increase of caloric income, decrease of energetic intake, or both. The body weight control is a mechanism finely regulated by several hormonal, metabolic, and nervous pathways. Recessive homozygous mutations in the ob/ob and db/db mouse strain cause extreme obesity. The products of the ob and db genes are leptin and its receptor, respectively (1,2). The leptin receptor is critical for energy homeostasis and regulation of food uptake. Leptin is a 16 kDa hormone that is mainly secreted by fat cells into the bloodstream. Under normal circ…

research product

The discovery of new inhibitors of HIF-1 transcriptional activity by virtual screening

research product

Occurrence of Antibiotic Resistance in the Mediterranean Sea

Seawater could be considered a reservoir of antibiotic-resistant bacteria and antibiotic resistance genes. In this communication, we evaluated the presence of bacterial strains in seawater collected from different coasts of Sicily by combining microbiological and molecular methods. Specifically, we isolated viable bacteria that were tested for their antibiotic resistance profile and detected both antibiotic and heavy metal resistance genes. Both antibiotic-resistant Gram-negative bacteria, Vibrio and Aeromonas, and specific antibiotic resistance genes were found in the seawater samples. Alarming levels of resistance were determined towards cefazolin, streptomycin, amoxicillin/clavulanic aci…

research product

Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target.

Body weight control is a mechanism finely regulated by several hormonal, metabolic, and nervous pathways. The leptin receptor (Ob-R) is crucial for energy homeostasis and regulation of food uptake. Leptin is a 16 kDa hormone that is mainly secreted by fat cells into the bloodstream, and under normal circumstances, circulating levels are proportionate to the fat body mass. Sensing of elevated leptin levels by the hypothalamic neurocircutry activates a negative feedback loop resulting in reduced food intake and increased energy expenditure. Decreased concentrations lead to opposite effects. Therefore rational design of leptin agonists constitute an appealing challenge in the battle against ob…

research product

Molecular dynamics studies on Mdm2 complexes: An analysis of the inhibitor influence

p53 is a powerful anti-tumoral molecule frequently inactivated by mutations or deletions in cancer. However, half of all human tumors expresses wild-type p53, and its activation, by antagonizing its negative regulator Mdm2, might offer a new strategy for therapeutic protocol. In this work, we present a molecular dynamics study on Mdm2 structure bound to two different known inhibitors with the aim to investigate the structural transitions between apo-Mdm2 and Mdm2-inhibitor complexes. We tried to gain information about conformational changes binding a benzodiazepine derivative inhibitor with respect the known nutlin and the apo form. The conformational changes alter the size of the cleft and…

research product

Survey on the presence of non-dioxine-like PCBs (NDL-PCBs) in loggerhead turtles (Caretta caretta) stranded in south Mediterranean coasts (Sicily, Southern Italy).

A total of 71 loggerhead turtles (Caretta caretta) stranded along the coasts of Sicily (Southern Italy) were examined for non–dioxine like polychlorinated biphenyl (NDL-PCB) levels in muscle and adipose tissue by a gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) method. The results revealed 6 high-indicator congener (∑6PCBIND) levels in 45% of the loggerhead turtles examined, with mean values of 980.39 ± 2508.39 ng/g wet weight in adipose tissue and 102.53 ± 238.58 ng/g wet weight in muscle tissue. The hexachloro and heptachloro PCB congeners were the most abundant in both the sample types. The highest NDL-PCB levels were reached in an adipose tissue sample of a logg…

research product

Molecular Modelling Studies on Molecular Pathways Related to Tumorigenesis in the Discovery of New Lead Compounds.

research product

Survey on the presence of non-dioxine-like PCBs (NDL-PCBs) in loggerhead turtles (Caretta caretta) stranded in south Mediterranean coasts (Sicily, Southern Italy)

A total of 71 loggerhead turtles (Caretta caretta) stranded along the coasts of Sicily (Southern Italy) were examined for non-dioxine like polychlorinated biphenyl (NDL-PCB) levels in muscle and adipose tissue by a gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) method. The results revealed 6 high-indicator congener (∑6 PCBIND ) levels in 45% of the loggerhead turtles examined, with mean values of 980.39 ± 2508.39 ng/g wet weight in adipose tissue and 102.53 ± 238.58 ng/g wet weight in muscle tissue. The hexachloro and heptachloro PCB congeners were the most abundant in both the sample types. The highest NDL-PCB levels were reached in an adipose tissue sample of a loggerhe…

research product

Salmo salar fish waste oil: Fatty acids composition and antibacterial activity

Background and aims Fish by-products are generally used to produce fishmeal or fertilizers, with fish oil as a by-product. Despite their importance, fish wastes are still poorly explored and characterized and more studies are needed to reveal their potentiality. The goal of the present study was to qualitatively characterize and investigate the antimicrobial effects of the fish oil extracted from Salmo salar waste samples and to evaluate the potential use of these compounds for treating pathogen infections. Methods Salmo salar waste samples were divided in two groups: heads and soft tissues. Fatty acids composition, and in particular the content in saturated (SAFAs), mono-unsaturated (MUFA…

research product

MODELLING STUDIES ON MOLECULAR PATHWAYS RELATED TO HYPOXIA IN SOLID TUMOR GROWTH

research product

Pharmacophore modelling as useful tool in the lead compounds identification and optimization

The goal of computer-aided molecular design methods in modern medicinal chemistry is to reduce the overall cost and time associated to the discovery and development of a new drug by identifying the most promising candidates to focus the experimental efforts on. Very often, many drug discovery projects have reached already a well-advanced stage before detailed structural data on the protein target have become available. A possible consequence is that often, medicinal chemists develop novel compounds for a target using preliminary structure–activity information, together with the theoretical models of interactions. Only responses that are consistent with the working hypothesis contribute to a…

research product