0000000000230078

AUTHOR

Lars Pastewka

0000-0001-8351-7336

Understanding the microscopic processes that govern the charge-induced deformation of carbon nanotubes

While carbon nanotubes have technological potential as actuators, the underlying actuation mechanisms remain poorly understood. We calculate charge-induced stresses and strains for electrochemical actuation of carbon nanotubes with different chiralities and defects, using density-functional theory and various tight-binding models. For a given deformation mode the concept of bonding and antibonding orbitals can be redefined depending on the sign of a differential band-structure stress. We use this theoretical framework to analyze orbital contributions to the actuation. These show charge asymmetric behavior which is due to next-nearest-neighbor hopping while Coulombic contributions account fo…

research product

Revised periodic boundary conditions: Fundamentals, electrostatics, and the tight-binding approximation

Many nanostructures today are low-dimensional and flimsy, and therefore get easily distorted. Distortion-induced symmetry-breaking makes conventional, translation-periodic simulations invalid, which has triggered developments for new methods. Revised periodic boundary conditions (RPBC) is a simple method that enables simulations of complex material distortions, either classically or quantum-mechanically. The mathematical details of this easy-to-implement approach, however, have not been discussed before. Therefore, in this paper we summarize the underlying theory, present the practical details of RPBC, especially related to a non-orthogonal tight-binding formulation, discuss selected featur…

research product

Lithium adsorption at prismatic graphite surfaces enhances interlayer cohesion

Abstract We use density functional calculations to determine the binding sites and binding energies of Li + at graphene edges and prismatic graphite surfaces. Binding is favorable at bare and carbonyl terminated surfaces, but not favorable at hydrogen terminated surfaces. These findings have implications for the exfoliation of graphitic anodes in lithium-ion batteries that happens if solute and solvent co-intercalate. First, specific adsorption facilitates desolvation of Li + . Second, chemisorption lowers the surface energy by about 1 J m −2 prismatic surface area, and gives graphite additional stability against exfoliation. The results offer an explanation for experiments that consistentl…

research product