0000000000230167

AUTHOR

Peter Barthol

showing 21 related works from this author

COMPARISON BETWEEN Mg IIkAND Ca II H IMAGES RECORDED BY SUNRISE/SuFI

2014

We present a comparison of high-resolution images of the solar surface taken in the Mg II k and Ca II H channels of the Filter Imager on the balloon-borne solar observatory SUNRISE. The Mg and Ca lines are sampled with 0.48 nm and 0.11 nm wide filters, respectively. The two channels show remarkable qualitative and quantitative similarities in the quiet Sun, in an active region plage and during a small flare. However, the Mg filtergrams display 1.4-1.7 times higher intensity contrast and appear more smeared and smoothed in the quiet Sun. In addition, the fibrils in a plage are wider. Although the exposure time is 100 times longer for Mg images, the evidence suggests that these differences ca…

PhysicsPlageSolar observatorySpace and Planetary SciencelawSunriseAstronomy and AstrophysicsSolar surfaceAstrophysicsChromosphereFlarelaw.inventionThe Astrophysical Journal
researchProduct

FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

2010

Until today, the small size of magnetic elements in quiet Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope Sunrise with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical s…

PhysicsPhotosphereFlux tubeStray lightFOS: Physical sciencesAstronomy and AstrophysicsField strengthAstrophysicsMagnetic fluxMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRadiative transferAstrophysics::Solar and Stellar AstrophysicsSunriseSolar and Stellar Astrophysics (astro-ph.SR)The Astrophysical Journal
researchProduct

Photospheric response to an ellerman bomb-like event—an analogy of Sunrise/IMaX observations and MHD simulations

2017

S. Danilovic et. al.

PhysicsPhotosphere010504 meteorology & atmospheric sciencesphotosphere [Sun]Event (relativity)photometric [Techniques]Sun: photosphereAnalogyAstronomyAstronomy and AstrophysicsAstrophysics7. Clean energy01 natural sciencesmagnetic fields [Sun]Sun: activitySpace and Planetary Science0103 physical sciencesSunriseactivity [Sun]MagnetohydrodynamicsSun: magnetic fields010303 astronomy & astrophysicsChromosphereTechniques: photometric0105 earth and related environmental sciences
researchProduct

Power spectrum of turbulent convection in the solar photosphere

2020

The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two balloon-borne SUNRISE missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations…

Convection010504 meteorology & atmospheric sciencesphotosphere [Sun]FOS: Physical sciencesAstrophysicsConvection01 natural sciencesPower lawlaw.inventionMomentumAtmospherelaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Optical depth0105 earth and related environmental sciencesPhysicsPhotosphereTurbulenceSun: photosphereAstronomy and AstrophysicsComputational physicsTurbulenceAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHydrostatic equilibrium
researchProduct

Surface waves in solar granulation observed with {\sc Sunrise}

2010

Solar oscillations are expected to be excited by turbulent flows in the intergranular lanes near the solar surface. Time series recorded by the IMaX instrument aboard the {\sc Sunrise} observatory reveal solar oscillations at high resolution, which allow studying the properties of oscillations with short wavelengths. We analyze two times series with synchronous recordings of Doppler velocity and continuum intensity images with durations of 32\thinspace min and 23\thinspace min, resp., recorded close to the disk center of the Sun to study the propagation and excitation of solar acoustic oscillations. In the Doppler velocity data, both the standing acoustic waves and the short-lived, high-deg…

PhysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAcoustic waveComputational physicsStanding waveSuperposition principleWavelengthAmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSurface waveSunriseWavenumberAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Oscillations on Width and Intensity of Slender Ca ii H Fibrils from Sunrise/SuFI

2017

R. Gafeira et. al.

010504 meteorology & atmospheric sciencesPhase (waves)FOS: Physical scienceschromosphere [Sun]Astrophysics01 natural sciencesMolecular physics0103 physical sciencesWave modeSunriseSun: oscillationsTechniques: imaging spectroscopySun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar observatoryoscillations [Sun]imaging spectroscopy [Techniques]Sun: chromosphereAstronomy and AstrophysicsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]Space and Planetary ScienceIntensity (heat transfer)The Astrophysical Journal Supplement Series
researchProduct

Supersonic Magnetic Upflows in Granular Cells Observed with Sunrise/IMaX

2010

Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {\AA} spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersoni…

PhysicsPhotosphereMagnetismStellar atmosphereFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsSpectral lineMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSunriseSupersonic speedSolar and Stellar Astrophysics (astro-ph.SR)Main sequence
researchProduct

Transverse component of the magnetic field in the solar photosphere observed by Sunrise

2010

We present the first observations of the transverse component of photospheric magnetic field acquired by the imaging magnetograph Sunrise/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. Their rate of occurrence is 1-2 orders of magnitude larger than values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point in their evolution. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).

PhysicsTransverse planeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceLinear polarizationGranule (solar physics)SunriseFOS: Physical sciencesAstronomy and AstrophysicsSolar photosphereAstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Magnetic field
researchProduct

Magnetic field emergence in mesogranular-sized exploding granules observed with SUNRISE/IMaX data

2011

We report on magnetic field emergences covering significant areas of exploding granules. The balloon-borne mission SUNRISE provided high spatial and temporal resolution images of the solar photosphere. Continuum images, longitudinal and transverse magnetic field maps and Dopplergrams obtained by IMaX onboard SUNRISE are analyzed by Local Correlation Traking (LCT), divergence calculation and time slices, Stokes inversions and numerical simulations are also employed. We characterize two mesogranular-scale exploding granules where $\sim$ 10$^{18}$ Mx of magnetic flux emerges. The emergence of weak unipolar longitudinal fields ($\sim$100 G) start with a single visible magnetic polarity, occupyi…

ConvectionPhysicsAdvectionFOS: Physical sciencesAstronomy and AstrophysicsPlasmaAstrophysicsMagnetic fluxMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceTemporal resolutionSunriseAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Detection of vortex tubes in solar granulation from observations with Sunrise

2010

We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that th…

ConvectionPhysicsVortex tubeSolar observatoryComputer simulationGranule (solar physics)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGranulationAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSubstructureSunriseAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

2017

S. K. Solanki et. al.

Brightness010504 meteorology & atmospheric sciencesphotosphere [Sun]PolarimetryFOS: Physical scienceschromosphere [Sun]Sun: faculae plagesAstrophysicspolarimetric [Techniques]01 natural scienceslaw.inventionTelescopelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSunrisefaculae plages [Sun]Sun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsPhotosphereSolar observatorySunspotsSun: chromosphereTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsPolarimeterAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]Space and Planetary ScienceData reductionThe Astrophysical Journal Supplement Series
researchProduct

Morphological Properties of Slender Ca ${\rm{II}}$ H Fibrils Observed by Sunrise II

2017

R. Gafeira et. al.

010504 meteorology & atmospheric sciencesFOS: Physical scienceschromosphere [Sun]AstrophysicsFibrilCurvature01 natural sciencesSponge spiculeObservatory0103 physical sciencesHigh spatial resolutionSunriseTechniques: imaging spectroscopySun: magnetic fields010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)Physicsimaging spectroscopy [Techniques]Sun: chromosphereAstronomy and Astrophysicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceThe Astrophysical Journal Supplement Series
researchProduct

Transverse Oscillations in Slender Ca II H Fibrils Observed with Sunrise/SuFI

2016

S. Jafarzadeh et. al.

Physics010504 meteorology & atmospheric sciencesCondensed matter physicsoscillations [Sun]imaging spectroscopy [Techniques]Sun: chromosphereFOS: Physical sciencesAstronomy and Astrophysicschromosphere [Sun]Fibril01 natural sciencesTransverse planemagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysics14. Life underwaterSun: oscillationsTechniques: imaging spectroscopySun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

A new MHD-assisted Stokes inversion technique

2016

©2017 The American Astronomical Society. All rights reserved. We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno–Rachkovsky equations for the polarized radiative transfer numerically and fit the …

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesphotosphere [Sun]FOS: Physical sciencesTechniques: spectroscopicAstrophysicspolarimetric [Techniques]01 natural sciencesspectroscopic [Techniques]0103 physical sciencesMerit functionRadiative transferInitial value problemAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsRelaxation processTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsInversion (meteorology)Computational physicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSolar timeMagnetohydrodynamics
researchProduct

Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

2017

L. P. Chitta et. al.

atmosphere [Sun]corona [Sun]010504 meteorology & atmospheric sciencesphotosphere [Sun]Polarity (physics)FOS: Physical sciencesFluxAstrophysics01 natural sciencesAtmosphereObservatory0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsPhotosphereSun: coronaSun: photosphereAstronomy and AstrophysicsCoronal loopMagnetic fluxMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsSun: atmosphere
researchProduct

Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere

2017

S. Jafarzadeh et. al.

010504 meteorology & atmospheric sciencesExtrapolationFOS: Physical scienceschromosphere [Sun]Field strengthAstrophysicsDense forest01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar observatorySun: chromosphereAstronomy and AstrophysicsMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Moving Magnetic Features around a Pore

2017

A. J. Kaithakkal et. al.

Physics010504 meteorology & atmospheric sciencesphotosphere [Sun]Polarity (physics)Sun: photosphereFluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesSunriseStatistical analysisSun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

Spectropolarimetric evidence for a siphon flow along an emerging magnetic flux tube

2016

©2017 The American Astronomical Society. All rights reserved.We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footp…

010504 meteorology & atmospheric sciencesPolarity (physics)photosphere [Sun]FOS: Physical sciencesAstrophysicspolarimetric [Techniques]01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsSolar observatoryPolarity symbolsTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic fluxMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsFlow (mathematics)magnetic fields [Sun]Space and Planetary Science
researchProduct

SUNRISE/IMaX observations of convectively driven vortex flows in the Sun

2010

We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertica…

Rotation periodPhysicsProper motionFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsVorticityRotationVortexPhysics::Fluid DynamicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSunriseDifferential rotationAstrophysics::Solar and Stellar AstrophysicsClockwiseSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

2017

The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies Gorobets, A. Y., Borrero, J. M., & Berdyugina, S. 2016, ApJL, 825, L18 of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight …

PhysicsConvectionPhotosphere010504 meteorology & atmospheric sciencesScale (ratio)Principle of maximum entropyFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceQuantum electrodynamicsQUIET0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsLimit (mathematics)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

Kinematics of Magnetic Bright Features in the Solar Photosphere

2016

S. Jafarzadeh et. al.

PhysicsPhotospherephotosphere [Sun]FOS: Physical sciencesSun: photosphereAstronomy and AstrophysicsSolar photosphereAstrophysicsKinematics01 natural sciencesMethods observationalmagnetic fields [Sun]Methods: observationalAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010306 general physics010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct