0000000000231068
AUTHOR
Christian Leps
Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020)
Polymeric Nanoparticles with Neglectable Protein Corona
Small : nano micro 16(18), 1907574 (2020). doi:10.1002/smll.201907574
Effect of Core-Crosslinking on Protein Corona Formation on Polymeric Micelles.
Most nanomaterials acquire a protein corona upon contact with biological fluids. The magnitude of this effect is strongly dependent both on surface and structure of the nanoparticle. To define the contribution of the internal nanoparticle structure, protein corona formation of block copolymer micelles with poly(N-2-hydroxypropylmethacrylamide) (pHPMA) as hydrophilic shell, which are crosslinked-or not-in the hydrophobic core is comparatively analyzed. Both types of micelles are incubated with human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Their size is determined by dynamic light scattering and proteins within the micellar fraction are characterized by…
Density of conjugated antibody determines the extent of Fc receptor dependent capture of nanoparticles by liver sinusoidal endothelial cells
Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with …