0000000000231149

AUTHOR

Adel Rahmani

showing 3 related works from this author

Evanescent light scattering: The validity of the dipole approximation

1998

In near-field optics the very concept of dipole is often used to represent either an elementary source or a scattering center. The most simple and widely used example is that of a small spherical particle whose polarizability is assumed to conform to the Clausius-Mossotti relation. While in conventional, far-field optics this approximation is known to be valid provided that the object is much smaller than the wavelength, its extension to near-field optics requires some precautions. Indeed, in the case of the scattering, by a spherical object, of an evanescent field generated, for instance, by total internal reflection or by a surface polariton, the strong-field gradient may increase the con…

PhysicsField (physics)Scatteringbusiness.industryDiscrete dipole approximationLight scatteringsymbols.namesakeDipoleOpticsPolarizabilityQuantum electrodynamicssymbolsRayleigh scatteringbusinessMultipole expansionPhysical Review B
researchProduct

Field propagator of a dressed junction: Fluorescence lifetime calculations in a confined geometry

1997

The study of the fluorescence phenomenon by near-field optical techniques requires one to describe precisely the spontaneous emission change occurring when the fluorescing particle is placed in a complex optical environment. For this purpose, the field susceptibility (also called the field propagator) of a planar junction formed by a cavity bounded by two semi-infinite bodies with arbitrary optical constant is derived within the framework of linear-response theory. The field propagator associated with the junction is then modified in a self-consistent manner to account for the presence of any arbitrary object inside the junction. As a first illustration the alteration of the fluorescence li…

PhysicsField (physics)Physics::OpticsPropagatorDielectricMolecular physicsAtomic and Molecular Physics and OpticsPlanarQuantum mechanicsParticleSpontaneous emissionSPHERESsense organsConstant (mathematics)Physical Review A
researchProduct

Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity

2006

We present a direct, room-temperature near-field optical study of light confinement by a subwavelength defect microcavity in a photonic crystal slab containing quantum-well sources. The observations are compared with three-dimensional finite-difference time-domain calculations, and excellent agreement is found. Moreover, we use a subwavelength cavity to study the influence of a near-field probe on the imaging of localized optical modes. © 2006 Optical Society of America.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhotoluminescencePhysics::OpticsNear and far field02 engineering and technology01 natural scienceslaw.inventionScanning probe microscopy020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineering010306 general physicsComputingMilieux_MISCELLANEOUSPhotonic crystal[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Total internal reflection[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNear-field opticsOpticsOptical microcavityAtomic and Molecular Physics and OpticsOCIS codes: 230.0230 180.5810 250.5230OptoelectronicsNear-field scanning optical microscopebusiness
researchProduct