0000000000234186

AUTHOR

Enric Cosme-llópez

The dual equivalence of equations and coequations for automata

The transition structure α : X ? X A of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. We use this algebra-coalgebra duality as a common perspective for the study of equations and coequations. For every automaton ( X , α ) , we define two new automata: free ( X , α ) and cofree ( X , α ) representing, respectively, the greatest set of equations and the smallest set of coequations satisfied by ( X , α ) . Both constructions are shown to be functorial. Our main result is that the restrictions of free and cofree to, respectively, preformations of languages and to quotients A * / C of A * with respect to a congr…

research product

K4-free Graphs as a Free Algebra

International audience; Graphs of treewidth at most two are the ones excluding the clique with four vertices (K4) as a minor, or equivalently, the graphs whose biconnected components are series-parallel. We turn those graphs into a finitely presented free algebra, answering positively a question by Courcelle and Engelfriet, in the case of treewidth two. First we propose a syntax for denoting these graphs: in addition to parallel composition and series composition, it suffices to consider the neutral elements of those operations and a unary transpose operation. Then we give a finite equational presentation and we prove it complete: two terms from the syntax are congruent if and only if they …

research product