0000000000234374
AUTHOR
Rubén Herrero-illana
First M87 Event Horizon Telescope Results. II. Array and Instrumentation
The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of th…
First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole
When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux rati…
A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 10 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evol…
Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Open Access funding provided by Max Planck Society.--All authors: Kim, Jae-Young; Krichbaum, Thomas P.; Broderick, Avery E.; Wielgus, Maciek; Blackburn, Lindy; Gómez, José L.; Johnson, Michael D.; Bouman, Katherine L.; Chael, Andrew; Akiyama, Kazunori; Jorstad, Svetlana; Marscher, Alan P.; Issaoun, Sara; Janssen, Michael; Chan, Chi-kwan; Savolainen, Tuomas; Pesce, Dominic W.; Özel, Feryal; Alberdi, Antxon; Alef, Walt…