0000000000234387

AUTHOR

Adithya Rajan

Mechanism of electrical switching of ultra-thin CoO/Pt bilayers

We study current-induced switching of the N\'eel vector in CoO/Pt bilayers to understand the underlaying antiferromagnetic switching mechanism. Surprisingly, we find that for ultra-thin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing the results of these electrical measurements to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the reorientation of the N\'eel vector in ultra-thin CoO(4 nm). This allows us to determine that even opposite resistance changes can result from a th…

research product

Electric-Field Control of Spin-Orbit Torques in Perpendicularly Magnetized W/CoFeB/MgO Films

Controlling magnetism by electric fields offers a highly attractive perspective for designing future generations of energy-efficient information technologies. Here, we demonstrate that the magnitude of current-induced spin-orbit torques in thin perpendicularly magnetized CoFeB films can be tuned and even increased by electric-field generated piezoelectric strain. Using theoretical calculations, we uncover that the subtle interplay of spin-orbit coupling, crystal symmetry, and orbital polarization is at the core of the observed strain dependence of spin-orbit torques. Our results open a path to integrating two energy efficient spin manipulation approaches, the electric-field-induced strain a…

research product