0000000000234389
AUTHOR
Aditya Kumar
Mechanism of electrical switching of ultra-thin CoO/Pt bilayers
We study current-induced switching of the N\'eel vector in CoO/Pt bilayers to understand the underlaying antiferromagnetic switching mechanism. Surprisingly, we find that for ultra-thin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing the results of these electrical measurements to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the reorientation of the N\'eel vector in ultra-thin CoO(4 nm). This allows us to determine that even opposite resistance changes can result from a th…
Interfacial Oxide Modulated unique Exchange Bias in CrPS4/Fe3GeTe2 van der Waals heterostructures
Two-dimensional van der Waals heterostructures are an attractive platform for studying exchange bias due to their defect free and atomically flat interfaces. Chromium thiophosphate (CrPS4), an antiferromagnet, has uncompensated magnetic spins in a single layer that make it an excellent candidate for studying exchange bias. In this study, we examined the exchange bias in CrPS4/Fe3GeTe2 van der Waals heterostructures using anomalous Hall measurements. Our results show that the exchange bias strength is robust for clean interfaces, with a hysteresis loop shift of about 55 mT at 5 K for few-layer Fe3GeTe2, which is larger than that obtained in most van der Waals AFM/FM heterostructures. However…