0000000000234524
AUTHOR
V. Batusov
The optical instrumentation of the ATLAS Tile Calorimeter
The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the oth…
Testbeam studies of production modules of the ATLAS Tile Calorimeter
We report test beam studies of {11\,\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\sim 70$~pe/GeV, exceeding the design goal by {40\,\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\,\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the respo…
The ATLAS hadronic tile calorimeter: From construction toward-physics
ATLAS; The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its unifo…
Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter
The response of pions and protons in the energy range of 20–180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron–scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-indu…
Mechanical construction and installation of the ATLAS tile calorimeter
This paper summarises the mechanical construction andinstallation of the Tile Calorimeter for the ATLASexperiment at the Large Hadron Collider in CERN, Switzerland. The TileCalorimeter is a sampling calorimeter using scintillator as the sensitivedetector and steel as the absorber and covers the central region of the ATLASexperiment up to pseudorapidities ±1.7. The mechanical construction ofthe Tile Calorimeter occurred over a periodof about 10 years beginning in 1995 with the completionof the Technical Design Report and ending in 2006 with the installationof the final module in the ATLAS cavern. Duringthis period approximately 2600 metric tons of steel were transformedinto a laminated struc…