0000000000234535

AUTHOR

Jose Flix

showing 6 related works from this author

The optical instrumentation of the ATLAS Tile Calorimeter

2013

The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the oth…

PhysicsPhysics::Instrumentation and Detectorsbusiness.industryOptical instrumentationATLAS experimentScintillatorCentral regionCalorimeterNuclear physicsTile calorimeterOpticsmedicine.anatomical_structureAtlas (anatomy)Scintillation countermedicineHigh Energy Physics::ExperimentDetectors and Experimental TechniquesbusinessInstrumentationMathematical Physics
researchProduct

Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II

2011

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…

Flight directionNuclear and High Energy PhysicsParticle physicsMesonTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energyLuminosityStandard Modellaw.inventionNuclear physicsParticle decaychemistry.chemical_compoundlawTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesInvariant massLimit (mathematics)FermilabCollider010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionSupersymmetryD0 experimentIMesCrystallographychemistryDecay lengthHigh Energy Physics::ExperimentLeptonPhysical Review Letters
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

Deployment of a WLCG network monitoring infrastructure based on the perfSONAR-PS technology

2014

The WLCG infrastructure moved from a very rigid network topology, based on the MONARC model, to a more relaxed system, where data movement between regions or countries does not necessarily need to involve T1 centres. While this evolution brought obvious advantages, especially in terms of flexibility for the LHC experiment's data management systems, it also opened the question of how to monitor the increasing number of possible network paths, in order to provide a global reliable network service. The perfSONAR network monitoring system has been evaluated and agreed as a proper solution to cover the WLCG network monitoring use cases: it allows WLCG to plan and execute latency and bandwidth te…

HistoryEngineeringbusiness.industryPerfSONARDistributed computingData managementNetwork monitoringNetwork topologyComputer securitycomputer.software_genreComputer Science ApplicationsEducationSoftware deploymentNetwork serviceUse casebusinesscomputerGraphical user interfaceJournal of Physics: Conference Series
researchProduct

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

2015

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

fundamental particleCompact Muon Solenoidstandard model flavor changing neutral currentsradioisotope decayB physicGaussian methodMU(+)MU(-)Temel Bilimler (SCI)rare decay [B/s0]Elementary particleATLAS DETECTOR12.15.MmÇOK DİSİPLİNLİ BİLİMLERRARE B-MESON DECAYS7000 GeV-cms8000 GeV-cmsSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energyddc:0702 CHARGED LEPTONSscattering [p p]High energy physics ; Experimental particle physics ; LHC ; CMS ; Standard ModelQC[Anahtar Kelime Yok]Large Hadron ColliderMedicine (all); Multidisciplinarystandard3. Good healthHigh Energy Physics - PhenomenologyCERN LHC CollFIS/01 - FISICA SPERIMENTALEpriority journalHiggs bosonScience & Technology - Other TopicsPARTICLE PHYSICSmass spectrum [dimuon]Protonviolationcolliding beams [p p]physicschemical analyzerMesonModels beyond the standard modelprobabilitymesonelectromagnetic radiationB/s0 --> muon+ muon-Nuclear physicsbranching ratio: measured [B0]SEARCHLeptonic semileptonic and radiative decays of bottom mesonRARE B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; LHC; CMS DETECTOR; LHCb DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0;B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; 2 CHARGED LEPTONS; ATLAS; DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0; COLLIDER; PARTICLE010306 general physicsScience & TechnologyMuonMULTIDISCIPLINARY SCIENCES010308 nuclear & particles physicsBranching fractionMeson Bnull hypothesisDoğa Bilimleri GenelElementary particlesLARGE HADRON COLLIDERHEPp(p)over-bar collisionsNATURAL SCIENCES GENERALrare decay [B0]13.20.HeMINIMAL FLAVOR VIOLATIONchemical analysisprecisionB0 --> muon+ muon-Física de partículesExperimental particle physicsleptonic decay [B0]Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelB-meson decays; p(p)over-bar collisions; branching fraction; root-s=1.96 tev; search; mu(+)mu(-); b-0; b-s(0); violation; modelsLarge Hadron Collider (LHC)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNeutral currentCOLLIDER[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]uncertainty12.60.-iFlavour Physicmass spectrometryPhysicsExperimental particleMultidisciplinaryCMSMedicine (all)Temel BilimlerSettore FIS/01 - Fisica SperimentaleB-meson decaysATLASLarge Hadron Collider beautybranching ratio: measured [B/s0]root-s=1.96 tevNatural Sciences (SCI)LHCNatural SciencesPARTICLEdata processingParticle Physics - Experimentchemical reactionParticle physicsbranching fractionNOPARTICLE PHYSICS; LARGE HADRON COLLIDER; CMS; LHCBmodelsLHCBExperimental particle; physics; data processing; electromagnetic field; electromagnetic radiation; fundamental particle; Gaussian method; physics; precision; chemical analysis; chemical analyzer; chemical reaction; elementary particle; Large Hadron Collider beauty; mass spectrometry; meson; null hypothesis; prediction; priority journal; probability; radioisotope decay; standard; uncertainty;B-MESON DECAYSelectromagnetic fieldTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYRare Decay0103 physical sciencesElectromagnetic fieldB-0elementary particleSDG 7 - Affordable and Clean EnergyDETECTORCompact Muon SolenoidMultidisipliner/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyLHCb DETECTORCMS LHC Meson B Rare DecayMinimal flavor violationpredictionLeptonsLHC-Bleptonic decay [B/s0]LHCbRare decayMedicine (all) MultidisciplinaryRARE B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; LHC; CMS DETECTOR; LHCb DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0B-S(0)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentExperimentsexperimental resultsCMS DETECTOR
researchProduct

Mechanical construction and installation of the ATLAS tile calorimeter

2013

This paper summarises the mechanical construction andinstallation of the Tile Calorimeter for the ATLASexperiment at the Large Hadron Collider in CERN, Switzerland. The TileCalorimeter is a sampling calorimeter using scintillator as the sensitivedetector and steel as the absorber and covers the central region of the ATLASexperiment up to pseudorapidities ±1.7. The mechanical construction ofthe Tile Calorimeter occurred over a periodof about 10 years beginning in 1995 with the completionof the Technical Design Report and ending in 2006 with the installationof the final module in the ATLAS cavern. Duringthis period approximately 2600 metric tons of steel were transformedinto a laminated struc…

EngineeringLarge Hadron ColliderAtlas (topology)business.industryPhysics::Instrumentation and DetectorsNuclear engineeringATLAS experimentCalorimeters; Detector design and construction technologies and materialsNuclear physicsTile calorimeterCalorimetersPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesMechanical constructionDetector design and construction technologies and materialsNuclear ExperimentbusinessInstrumentationMathematical Physics
researchProduct